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Motivation: summarize information from a set o

Procedure at the mid-way between clustering and compression
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Figure: Left: example of clustering.
Middle and right: compression of the middle image into the right image (credits:
Wikipedia)
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Motivation: summarize information from a set of objects

Example 1: alternative to Monte Carlo to approximate integrals over high
dimensional spaces : for fQ f(w)dw it is good to have a sample

% ZK 0wy cIose as measure, to dw : if dw ~ % Zszl dw, then

fQ w)dw ~ i Z 1 Fwk)

@ lower dimensional objects : .

quadrature; - 7
@ more exotic objects: w (a curve) "

is a realization of a W; = -

Brownian mvt. "cubature”. N

f f(t, Wy)dW, ”_‘;
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Figure: Example of cubature " points” for
a Brownian motion, from [3].
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summarize information

Example 2: summarize a distribution with K points, e.g. 2D Gaussian.
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Figure: Example of compression with K = 17
points of a 2D Gaussian using special statistical
Figure: 2D Gaussian (credits: Wikipedia)distances (cf. [4]).

Presence of a three layers point structure: inner

2, middle 7, outer 8 (from [5]).
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Motivation: summarize information from a set of objects

Example 3: summarize a large database of objects (e.g. MNIST, FMNIST,
CIFAR10, ...)
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Figure: Left: MNIST samples (25 out of 60'000). Right: Fashion MNIST samples (25 out of
60'000), from [4] iy
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Compression tools and algorithms: idea

Goal: compress a measure (usually a probability measure).

Rq: close similar to vector quantization and clustering, that aim to assign
each point to a cluster.

Idea: suppose target p is a finite Borel measure. Using the ideas from
doi:10.5281/zenodo.5705389, to obtain a K-compression of the
measure 4 one minimizes the distance from % Zle Ox, to p, defined as:

K K
1
(e o) = el g Do) Y Bl
k=1 k1 Ko
(1)
k(x,y) = d(0x,6,)?; when k(x,y) = h(|x — y|): translation and rotation
invariant kernel statistical distance; h(x) = important function to choose.

h_.|:min< ) KZlek x|+ = Zguxk> (2)

k#l o
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doi:10.5281/zenodo.5705389

Statistical distances: conditionally positive kernels

Question: what function h to choose 7

Definition (conditional positive definite)

A kernel k(-,-) is said to be conditionally positive definite if for any / € N,
P1,---s Py With >~ p; = 0 and any xq, ..., x;: ZIJ pipjk(xi,x;) > 0.

—k is also said to be a negative definite kernel.

Theorem (" Gini difference” Gini 1912; "energy distance” Szekelly

1985, 2002; "maximum mean discrepancy” Gretton 2007,
Radon-Sobolev G.T. 2021 [4])

The kernel h(x) = |x| is conditionally positive definite.

Rqg: many other kernels are known to be conditionally positive definite:
Gaussian, etc.
Historical idea: the "energy distance” builds on the Newton's potential
energy concept, cf Szekely 2002.
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Statistical distances: conditionally positive kernels

Proof (GT 2021 version).

Radon transform of the dual of the homogeneous Sobolev space HY: take
all directions on the unit sphere, project, measure in H~1, sum up:
d(p,v)? = m Js 10p — 9#V||$_-171d9. Obviously positive,
non-degenerate by properties of the Radon transform. O

When d(x,8,)? = |x — y|, one minimizes terms involving | - | (not | - |?) :
gradient descent methods experience instabilities as the differential is ﬁ

Theorem (Schoenberg 1938 [2], Micchelli 1984 [1], GT 2021 [5])

For any a > 0, a €]0, 1[, the kernels h(x) = (a + |x|?)* and

B

h(X) = Gy
explicitly as a Gaussian mixture. In particular this is true for v/a + x2.

are conditionally positive definite and can be expressed

Rq: the proof extends to a larger family of kernels,
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Compression tools and algorithms: in practice

Implementation : minimize X = (x, ..., xx) — d? (% Z,’le 5Xk,,u>

e deterministic optimization techniques when x — E, ., h(x — y) has a
closed form (e.g. normal mixture)

e ML / stochastic optimization algorithms (e.g. SGD, Adam, momentum,
..) when the database is large: compute a noisy gradient using
batches/sampling from the database.

Good convergence is obtained in general.
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'

Figure: Measure compression results, from [5].

Left : MNIST compression with K = 10 samples: we computed the compression then took
closest from the database.Note that algorithm chooses by itself to represent the each figure
exactly once. Right : 16 2D Gaussians on a grid compressed with K = 16 * 3 points. o
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Theoretical questions

e does the minimization of X = (xq, ..., xk) — d? (% sz1 5Xk,u> has a
solution ? Yes (standard continuity and compactness).

e existence for non-uniform compression weights 7 OK, minimize, for given
px that sum to 1 : X = (xq, ..., xk) +> d? (Z,’le pkéxk,,u).

e what about p being also a variable (clusters of unknown weight) ? OK,
the optimization w/r to p is analytic.
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Theoretical questions: positivity of the compression

Question: suppose p > 0; when optimizing both weights p,x and support
points x, variables) is the compressed measure positive too ?
y

Baas R projection of (0,0) to
ERERE x (8,0),(9,-5), (10, —5) has optimal
' ' weight negative for red point
'Y}

Proposition (..., GT 2021 in some cases)

Let i be a probability law on a convex domain with finite first order
moment and K € N*. If

K K 2
it € 2wyt s |4 (Do) [ @
k=1

k=1

then Yy pjdx: > 0 ie., pf > 0, Vk.

e €
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Theoretical questions: non-constant target compression

e Question: how does the compression depends on target measure 1 ?
Suppose i depends on parameter u e.g. p(u) = N(u,1) (1D normal of
mean u, variance 1). K = fixed, compression for given u =ok. What
about continuity w/r to u ?

e 1 = p(u), each measure is 1D valued; to simplify we take them as
probability laws.

Lemma (regularity w/r to target)

Suppose u +— p(u) is regular enough (...) and the measure p(u) is
non-atomic Yu; then:

e the minimization problem & Z,’le Sx, > d? (% Zszl 5Xk,u(u))

admits a unique solution C(u) = % Zszl Ox, (as a probability law);

e the mapping u — C(u) is regular with respect to u.
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Theoretical questions: non-constant target compression

Multi-D : u € Q ~ u(u), measure on RN
Problems :
e the compression is not necessarily unique for some u (e.g. symmetries of

1);
e difficult to prove the existence of a continuous selection (e.g. Kakutani

et al.) ... lack of convexity.
Example: minimize norm of C : Q — R¥*N in some Sobolev space H

K 2
A+ | d (KZ Clupert ) du 4)
k=1

— e COIE + /Q F(u, C(u))du (5)

Remark: existence ok, but uniformity when € — 0 not clear.
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Conclusions and future work

Further questions:
e more details on the topology depending on h
e how to interpolate, continuous selection 7

e positivity under more general conditions
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