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Motivation: summarize information from a set of objects

Procedure at the mid-way between clustering and compression

Figure: Left: example of clustering.
Middle and right: compression of the middle image into the right image (credits:
Wikipedia)
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Motivation: summarize information from a set of objects

Example 1: alternative to Monte Carlo to approximate integrals over high
dimensional spaces : for

∫
Ω f (ω)dω it is good to have a sample

1
K

∑K
k=1 δωk

close, as measure, to dω : if dω ' 1
K

∑K
k=1 δωk

then∫
Ω f (ω)dω ' 1

K

∑K
k=1 f (ωk)

lower dimensional objects :
quadrature;

more exotic objects: ω (a curve)
is a realization of a Wt =
Brownian mvt. ”cubature”.∫
f (t,Wt)dWt

Figure: Example of cubature ”points” for
a Brownian motion, from [3].
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Motivation: summarize information from a set of objects

Example 2: summarize a distribution with K points, e.g. 2D Gaussian.

Figure: 2D Gaussian (credits: Wikipedia)
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Figure: Example of compression with K = 17
points of a 2D Gaussian using special statistical
distances (cf. [4]).
Presence of a three layers point structure: inner
2, middle 7, outer 8 (from [5]).
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Motivation: summarize information from a set of objects

Example 3: summarize a large database of objects (e.g. MNIST, FMNIST,
CIFAR10, ...)

Figure: Left: MNIST samples (25 out of 60’000). Right: Fashion MNIST samples (25 out of
60’000), from [4]
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Compression tools and algorithms: idea

Goal: compress a measure (usually a probability measure).
Rq: close similar to vector quantization and clustering, that aim to assign
each point to a cluster.
Idea: suppose target µ is a finite Borel measure. Using the ideas from
doi:10.5281/zenodo.5705389, to obtain a K -compression of the
measure µ one minimizes the distance from 1

K

∑K
k=1 δxk to µ, defined as:

d2

(
1

K

K∑
k=1

δxk , µ

)
:= c(h, µ)− 1

2K 2

K∑
k 6=l

k(xk , xl) +
1

K

K∑
k=1

Ey∼µk(xk , y)

(1)
k(x , y) = d(δx , δy )2; when k(x , y) = h(|x − y |): translation and rotation
invariant kernel statistical distance; h(x) = important function to choose.

h = | · | : min

c(h, µ)−
1

2K2

K∑
k 6=l

|xk − xl |+
1

K

K∑
k=1

gµ(xk )

 (2)
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Statistical distances: conditionally positive kernels

Question: what function h to choose ?

Definition (conditional positive definite)

A kernel k(·, ·) is said to be conditionally positive definite if for any I ∈ N,
p1, ..., pI with

∑
pi = 0 and any x1, ..., xI :

∑
i ,j pipjk(xi , xj) ≥ 0.

−k is also said to be a negative definite kernel.

Theorem (”Gini difference” Gini 1912; ”energy distance” Szekelly
1985, 2002; ”maximum mean discrepancy” Gretton 2007,
Radon-Sobolev G.T. 2021 [4])

The kernel h(x) = |x | is conditionally positive definite.

Rq: many other kernels are known to be conditionally positive definite:
Gaussian, etc.
Historical idea: the ”energy distance” builds on the Newton’s potential
energy concept, cf Szekely 2002.
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Statistical distances: conditionally positive kernels

Proof (GT 2021 version).

Radon transform of the dual of the homogeneous Sobolev space Ḣ1: take
all directions on the unit sphere, project, measure in Ḣ−1, sum up:
d(µ, ν)2 = 1

area(S)

∫
S ‖θ#µ− θ#ν‖2

Ḣ−1dθ. Obviously positive,
non-degenerate by properties of the Radon transform.

When d(δx , δy )2 = |x − y |, one minimizes terms involving | · | (not | · |2) :
gradient descent methods experience instabilities as the differential is x

|x |2 .

Theorem (Schoenberg 1938 [2], Micchelli 1984 [1], GT 2021 [5])

For any a ≥ 0, α ∈]0, 1[, the kernels h(x) = (a + |x |2)α and

h(x) = ‖x2‖
(a+|x |2)α

are conditionally positive definite and can be expressed

explicitly as a Gaussian mixture. In particular this is true for
√
a + x2.

Rq: the proof extends to a larger family of kernels.
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Compression tools and algorithms: in practice

Implementation : minimize X = (x1, ..., xK ) 7→ d2
(

1
K

∑K
k=1 δxk , µ

)
• deterministic optimization techniques when x 7→ Ey∼µh(x − y) has a
closed form (e.g. normal mixture)
• ML / stochastic optimization algorithms (e.g. SGD, Adam, momentum,
...) when the database is large: compute a noisy gradient using
batches/sampling from the database.
Good convergence is obtained in general.
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Figure: Measure compression results, from [5].
Left : MNIST compression with K = 10 samples: we computed the compression then took
closest from the database.Note that algorithm chooses by itself to represent the each figure
exactly once. Right : 16 2D Gaussians on a grid compressed with K = 16 ∗ 3 points.
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Theoretical questions

• does the minimization of X = (x1, ..., xK ) 7→ d2
(

1
K

∑K
k=1 δxk , µ

)
has a

solution ? Yes (standard continuity and compactness).

• existence for non-uniform compression weights ? OK, minimize, for given

pk that sum to 1 : X = (x1, ..., xK ) 7→ d2
(∑K

k=1 pkδxk , µ
)

.

• what about p being also a variable (clusters of unknown weight) ? OK,
the optimization w/r to p is analytic.
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Theoretical questions: positivity of the compression

Question: suppose µ ≥ 0; when optimizing both weights pk and support
points xk variables) is the compressed measure positive too ?

x

y

� �

��

projection of (0, 0) to
(8, 0), (9,−5), (10,−5) has optimal
weight negative for red point

Proposition (..., GT 2021 in some cases)

Let µ be a probability law on a convex domain with finite first order
moment and K ∈ N?. If

K∑
k=1

p∗kδx∗k ∈ argminpk ,xk ,
∑K

k=1 pk=1

d ( K∑
k=1

pkδxk , µ

)2
 (3)

then
∑K

k=1 p
∗
kδx∗k ≥ 0 i.e., p∗k ≥ 0, ∀k.
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Theoretical questions: non-constant target compression

• Question: how does the compression depends on target measure µ ?
Suppose µ depends on parameter u e.g. µ(u) = N (u, 1) (1D normal of
mean u, variance 1). K = fixed, compression for given u =ok. What
about continuity w/r to u ?
• µ = µ(u), each measure is 1D valued; to simplify we take them as
probability laws.

Lemma (regularity w/r to target)

Suppose u 7→ µ(u) is regular enough (...) and the measure µ(u) is
non-atomic ∀u; then:

the minimization problem 1
K

∑K
k=1 δxk 7→ d2

(
1
K

∑K
k=1 δxk , µ(u)

)
admits a unique solution C (u) = 1

K

∑K
k=1 δxk (as a probability law);

the mapping u 7→ C (u) is regular with respect to u.
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Theoretical questions: non-constant target compression

Multi-D : u ∈ Ω 7→ µ(u), measure on RN

Problems :
• the compression is not necessarily unique for some u (e.g. symmetries of
µ);
• difficult to prove the existence of a continuous selection (e.g. Kakutani
et al.) ... lack of convexity.
Example: minimize norm of C : Ω→ RK×N in some Sobolev space H

ε‖C (·)‖2
H +

∫
Ω
d

(
1

K

K∑
k=1

δC(u)k , µ(u)

)2

du (4)

= ε‖C (·)‖2
H +

∫
Ω
F(u,C (u))du (5)

Remark: existence ok, but uniformity when ε→ 0 not clear.
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Conclusions and future work

Further questions:

• more details on the topology depending on h

• how to interpolate, continuous selection ?

• positivity under more general conditions
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