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Executive summary

Reinforcement learning (RL) algorithms have been used very successfully
to find good strategies based on limited information.

However few works investigated implicit type algorithms.

Exploiting previous JKO-style ”flow gradient” techniques, we discuss a
more formal setting for the implicit policy gradient schemes.

The procedure is further adapted to two situations: portfolio optimization
in finance and the classical multi-armed bandit RL problem. Preliminary
numerical results are encouraging.
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Reminders : types of ”learning”

• Supervised learning : e.g. classification: the labels are given i.e. we
know the value function;

• Unsupervised learning : e.g. generative : no labels, only an objective e.g.
clustering or generate objects similar to a given set

• Reinforcement learning : e.g. game play : based on the interaction with
the environment; any action executed within an environment; a signal is
received that indicates whether the action has been positive or negative.
The good actions are reinforced encouraged and bad actions are
”punished”; note that in the beginning good/bad is not always defined
(e.g. 0.5 is good ?)
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Reminders : types of ”learning”

Left : supervised learning e.g. classification, e.g. CIFAR10/100 labels. (source: Tensorflow);
Middle : generative learning from Midjourney (source wikipedia, sept 2023
https://en.wikipedia.org/wiki/Generative artificial intelligence ) ; Right : reinforcement
learning, credits : https://www.youtube.com/watch?v=QilHGSYbjDQ and
https://www.youtube.com/watch?v=VMp6pq6 QjI.

• We will focus on reinforcement learning.
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Multi-armed bandit

• the problem is to allocate limited resources (time, money, turns etc.)
among terms of a given list. Goal is to maximize expected rewards.
• Name: from slot-machines (one-armed bandit); example of goal

maximize return over n = 1000 steps.

References : [1, 2] etc.
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Multi-armed bandit

• k-armed bandit : has k options to choose from
• Other situations: choice among medical treatments, for a series of

patients
• rewards information: each action has a random reward with a fixed

but unknown mean;
• the means will be called ”values” of the arms.
• Notations t : turn or time; Rt : reward at step t (random variable),

At : action at step t, A : set of possible actions
• value function q∗ : A → R is unknown; in particular

q∗(a) := E[Rt |At = a]. (note : here ”*” stands for the ”true” or
”optimal” or ”most precise”)
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Multi-armed bandit : (policy) gradient algorithms

Choice of arm: probability law πt ; auxiliary variables Ht ,
πt = softmax(Ht) : P(At = a) = eHt (a)∑k

b=1 eHt (b)
=: πt(a)

• Perspective: stochastic optimization approach (e.g. like Stochastic
Gradient Descent [3]) to maximize the expected reward
R = E[Rt ] =

∑
b q∗(b)πt(b) w/r to Ht which define πt .

• softmax derivation rule : ∇Ht (a)πt(b) = πt(b)(1b=a − πt(a))
• Recall: SGD uses a non-biased version of the gradient, possibly involving
some random variable here At
• ∇Ht (a)R = ∇Ht (

∑
b q∗(b)πt(b)) =

∑
b q∗(b)πt(b)(1b=a − πt(a))

= EAt [q∗(At)(1At =a − πt(a))]
• Rt(1a=At − πt(a)) = unbiased estimator for ∇Ht (a)R because
q∗(At) = E[Rt |At ]; we use it in the SGD update of Ht+1.
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Multi-armed bandit : theoretical insights into gradient
algorithms

• Next idea: minimize R or R− c is the same (cst. c independent of At)

• R − c =
∑

b(q∗(b)− c)πt(b)

• ∇Ht (a)(R− c) = ... = EAt [(q∗(At)− c)(1At =a − πt(a))]

• Choice for c ? Idea: consistency ”if we are already in the solution move
the least possible“ : c = R̄t (baseline) (e.g. take a situation with 2 or 3
actions having same q∗); can be seen as variance reduction technique
[4, 5].

• Final update formula Ht+1(a) = Ht(a) + α(Rt − R̄t)(1a=At − πt(a)) as
expected.
• α = ”learning rate” to be set, may be difficult to fit
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Reinforcement learning in finance

• we will take the example of portfolio optimization : choose among K
assets
• notation : πt(k) will be the proportion of wealth allocated to asset k;
• total portfolio return

∑
k π(k)Rt(k)

• at first sight it is similar to reward maximization in MAB with the
distinction all K rewards are available simultaneously at each step
• we will ask the question of ”implicit” stochastic gradient schemes (see

next section why) that are less sensitive to the choice of the learning
rate α
• then we will move to more particular considerations regarding risk

metrics (such as volatility etc) on one side and on higher order policy
gradient algorithms on the other side.
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Reinforcement learning : implicit gradient schemes
Stochastic implicit schemes may behave bad ...

SDE : dX = a(X )dt + b(X )dWt

• Euler-Maruyama (explicit) Xn+1 = Xn + a(Xn)∆t + b(Xn)∆Wn, ok
• ”implicit” Euler-Maruyama : Xn+1 = Xn + a(Xn+1)∆t + b(Xn+1)∆Wn

• For a = 0, b(X ) = X : Xn+1 = Xn
1−∆Wn

; E|Xn+1| =∞ because
E
∣∣∣ 1
N (µ,σ2)

∣∣∣ =∞, N (µ, σ2) = normal variable.

Stochastic optimization : L(x) = Eω[x2Z (ω)/2], Z (ω) ∼ N (1, 1)
• L(x) = x2/2, minimum at x = 0.
• For ρ small enough the (explicit) stochastic gradient decent (SGD)

converges : xn+1 = xn − ρxnZn = xn(1− ρZn).
• ISGD (implicit SGD) : xn+1 = xn − ρxn+1Zn thus xn+1 = xn

1+ρZn
.

Cannot make any step because EZn |xn+1| =∞ !
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Reinforcement learning : implicit gradient schemes

General conclusion : implicit schemes may be unstable if stochastic
character is present.

They are however special cases [6] where ISGD is more stable and
asymptotically of same order as SGD : ”the implicit method is
unconditionally stable under any specification of the learning rate, whereas
standard SGD can deviate arbitrarily when the learning rate is
misspecified” (from [6]).
Procedural problem : in [6] the stochastic variable is draws from the
future distribution, can pose problems in practice.

Question : do implicit algorithm work for our application ?

Which one, how to design them ?
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Gradient flows: theory
• F : Rd → R = a smooth convex function, x̄ ∈ Rd ; gradient flow from x̄
= a curve (xt)t≥0: x ′t = −∇F (xt) for t > 0, x0 = x̄ .
• Polish metric space (X , d), functional F : (X , d)→ R ∪ {+∞}:
non-trivial defintion, huge litterature (cf. books by Ambrosio et al. ,
Villani, Santambroggio) [7, 8]...

• Euclidian space (under some regularity assumptions):

d
dt F (xt) = 〈∇F (xt), x ′t〉 ≥ −

∣∣x ′t ∣∣ · |∇F | (xt) ≥ −1
2
∣∣x ′t ∣∣2 − 1

2 |∇F |2 (xt),

or equivalently d
dt F (xt) + 1

2
∣∣x ′t ∣∣2 + 1

2 |∇F |2 (xt) ≥ 0,

with equality only if x ′t = −∇F (xt).
• Conclusion: d

dt F (xt) + 1
2 |x
′
t |

2 + 1
2 |∇F |2 (xt) ≤ 0 a.e. is equivalent with

x ′t = −∇F (xt).
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Gradient flows: theory
• Euclidian space formulation: d

dt F (xt) + 1
2 |x
′
t |

2 + 1
2 |∇F |2 (xt) ≤ 0 a.e.

• the (local metric) slope of F at x :
|∇F | (x) = lim sup

z→x
[F (x)−F (z)]+

d(x ,z) = max
{

lim sup
z→x

F (x)−F (z)
d(x ,z) , 0

}
.

• the metric derivative of x at t: |x ′t | = limh→0
d(xt+h,xt )
|h| , exists a.e. as

soon as t 7→ xt is absolutely continuous. Moreover |x ′| ∈ L1(0, 1).
• EDI ∇-flow (pointwise): d

dt F (xt) + 1
2 |x
′
t |

2 + 1
2 |∇F |2 (xt) ≤ 0 a.e.

• EDI ∇-flow from x̄ : an absolutely continuous curve such that:

∀s ≥ 0, F (xs) + 1
2

∫ s

0

∣∣x ′r ∣∣ dr + 1
2

∫ s

0
|∇F |2 (xr ) dr ≤ F (x̄),

a.e. t > 0, ∀s ≥ t, F (xs) + 1
2

∫ s

t

∣∣x ′r ∣∣ dr + 1
2

∫ s

t
|∇F |2 (xr )dr ≤ F (xt).

• EVI form for λ-convex (i.e., when smooth F ′′ ≥ λId ...) functionals:
F (xt) + 1

2
d
dt d2(xt , y) + λ

2 d2(xt , y) ≤ F (y), ∀y , a.e. t ≥ 0.
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Gradient flows examples: heat flow (Fokker-Planck)

X= P2(R) (the set of probability measures on (R,B(R)) with finite
second-order moment, endowed with the Wasserstein distance W2)
Consider for σ ∈ R F : P2(R)→ R ∪ {+∞}:
F (ν) =

∫
R V (x)ρ(x) + σ2

2
∫
R ρ(x) log(ρ(x))dx , if ν � dx , ν = ρ(x)dx

F (ν) = +∞, if ν �/ dx .
For smooth V , the gradient flow t 7→ ν(t) ∈ P2(R) of F satisfies
ν(t) = ρ(t, ·)dx and:

∂ρ

∂t (t, x) = ∂

∂x [V ′(x)ρ(t, x)] + σ2

2
∂2ρ

∂x2 (t, x), (1)

i.e., Fokker-Planck of the SDE: dX (t) = −V ′(X (t))dt + σdW (t).

Remark: also a L2 flow (term
∫
|∇ρ|2)...
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Gradient flows examples: heat flow (Fokker-Planck)
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Figure: Initial data for the heat flow (FP) model and its evolution (VIDEO).
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Gradient flows examples : a 1D Patlak-Keller-Segel model

• the (modified) Patlak–Keller–Segel system (Perthame-Calvez-Sharifi
Tabar 2007, Blanchet-Calvez-Carrillo 2008), is a PDE model for
diffusion-aggregation competition in biological applications (chemotaxis).

• Free energy functional:

G[ρ] =
∫
ρ(t, x) log(ρ(t, x)) dx + χ

π

∫ ∫
ρ(t, x)ρ(t, y) log |x − y |dxdy

• the resulting Patlak-Keller-Segel equation:

∂ρ
∂t = ∆ρ−∇(χρ∇c), t > O, x ∈ Ω ⊂ Rd (2)

c = − 1
dπ log |z | ? ρ (3)

ρ = cell density, c = concentration of chemo-attractant, χ = sensitivity
of the cells to the chemo-attractant.
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Gradient flows examples: 1D Patlak-Keller-Segel model
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Figure: Initial data for the PKS model: χ = π (left), χ = 1.9π (right) and its evolution
(VIDEO T = 2). Implementation : G. Legendre; ∇-flow JKO PKS code : courtesy A. Blanchet.
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Gradient flows: the JKO scheme

• Jordan, Kinderlehrer and Otto ’98, (JKO) numerical scheme: time step
= τ > 0, x τ0 = x̄ ∈ X , by recurrence x τn+1 = a minimizer of the functional

x 7→ PJKO
F (x ; x τn , τ) := 1

2τ d2(x τn , x) + F (x). (4)

• If X= Hilbert, F = smooth, JKO = implicit Euler (IE) scheme, i.e.,
xτn+1−xτn

τ = −∇F (x τn+1).
• JKO scheme was initially used theoretically to prove the existence of a
gradient flow

• JKO scheme only (!!) was then used numerically to compute the
gradient flow (J.K.O ’99, Blanchet et al. 2009, Benamou et al 2016, ...).
What about other numerical schemes ?
• JKO = first-order. Dynamics is regular with respect to time ! What
about higher (second) order ?
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High order schemes

• Idea 1: by Runge-Kutta : ODE x ′(t) = f (x(t)) (f = −∇F )
Crank-Nicholson x τk+1 = x τk + τ fk+1+fk

2 , 2nd order.
For ∇-flows in a metric space: no gradient ’f ’, no vector calculus.
• Idea 2 (from symplectic integrators): increase the order by composition
? here: take F quadratic, equation x ′(t) = Ax(t) (linear);
? Implicit Euler: xτk+1−xτk

τ = Ax τk+1 thus x τk+1 = (I − τA)−1x τk ;
? composition of IE steps α1h, .... αnh : multiplication by

(I − αnτA)−1...(I − α1τA)−1;
? condition to be the same as exp(Aτ):

first order
∑n
`=1 α` = 1;

second order
∑n
`=1 α

2
` +

∑
1≤`<m≤n α`αm = 1/2.

Second condition implies (
∑n
`=1 α`)

2 −
∑

1≤`<m≤n α`αm = 1/2 thus∑
1≤`<m≤n α`αm = 1/2,

∑n
`=1 α

2
` = 0.

CANNOT obtain second order from composition of I.E. schemes.
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Second order schemes for gradient flows: the VIM scheme

• Recall for ODE x ′(t) = f (x(t)): consistency error ( tk = kτ).
consistency error for Implicit Euler x(tk+1)−x(tk )

τ − f (x(tk+1)) =
x ′(tk+1/2) + O(τ2)− f (x(tk+1)) = f (x(tk+1/2))− f (x(tk+1))︸ ︷︷ ︸

O(τ)

+O(τ2).

• (modified) Midpoint method: x τk+1 = x τk−1 + 2τ fk , 2nd order.

• idea: use the variational formulation : Variational Implicit Midpoint
(VIM) scheme (G. Legendre, G.T., ’16 [9]):
x τk+1 ∈ argminx∈A

d(xτk ,y)2

2τ + 2F ( xτk +y
2 )

” x+y
2 ” = the midpoint of the geodesic from x to y .

• Hilbert space critical point equation: xτn+1−xτn
τ +∇F ( xτn+1+xτn

2 ) = 0.
Consistency error = O(τ2).
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Second order schemes for gradient flows: the EVIE scheme
• Re-writing of the VIM scheme: x τk+1 ∈ argminx∈A

d(xτk ,y)2

2τ + 2F ( xτk +y
2 )

• Notation z = xτk +y
2 , then y is the 2-geodesic-extrapolate of x τk with

respect to z , ”y = 2z − x τk ”; d(x τk , y) = 2d(x τk , z).
• minz∈A...

d(xτk ,z)2

2(τ/2) + F (z) : BUT this is I.E. of step τ/2 !
• Extrapolated Variational Implicit Euler (EVIE) scheme : do a τ/2 IE (=
JKO) step and then extrapolate on the geodesic.
EASY to implement in an existing JKO / IE code ! OK in Hilbert spaces ...

xτn
x
IE:τ/2
n+1

xτn
x
IE:τ/2
n+1

xEV IE:τ
n+1
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Numerical results for VIM and EVIE schemes: heat flow
Numerical results for F (ν) =

∫
R V (x)ρ(x) + σ2

2
∫
R ρ(x) log(ρ(x))dx ,

V (x) = θ
(x−µ)2

2 , T = 1, σ = 1, θ = 1
2 , µ = 5, M = 32 spatial discretization points.
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Figure: # of time steps: 4, 7, 12, 20, 33, 54, 90 and 148 (reference 244). Left: error for JKO
(dotted line) and VIM / EVIE (solid lines) schemes. Right: order of convergence: JKO (dotted
line), VIM / EVIE (solid lines). 4 steps VIM/EVIE = 90 steps JKO/IE.
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Numerical results for the EVIE scheme: PKS
G[ρ] =

∫
ρ(t, x) log(ρ(t, x)) dx + χ

π

∫ ∫
ρ(t, x)ρ(t, y) log |x − y |dxdy
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Figure: Error of the JKO and EVIE schemes for PKS model; T = 2, time steps: reference sol
EVIE(1808). Left: χ = π, order JKO = 1.02, order EVIE = 2.01; Right: χ = 1.9π, order JKO
= 0.99, order EVIE = 2.00 (corrected by excluding first two points).
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Theoretical results for the VIM scheme

mid-slope :
∣∣∣∇MF

∣∣∣ (x , y) = lim sup
z→y

(F( x+y
2 )−F( x+z

2 ))+

d( x+y
2 , x+z

2 ) .

Hypothesis ( non standard):
• (geometric) ∀x ∈ X the set

⋃
y∈X

x+y
2 is closed;

• (geometric) ∀(x , y) ∈ X 2, the set x+y
2 is a singleton.

• (adaptation for
∣∣∣∇MF

∣∣∣ instead of |∇F |) ∀x ∈ D(F ),
D(F ) ⊃ (xn)n∈N → x and D(F ) ⊃ (yn)n∈N → x imply∣∣∣∇MF

∣∣∣ (x , x) ≤ lim infn→∞
∣∣∣∇MF

∣∣∣ (xn, yn);
• (regularity for F ) if any two of the elements x , y , x+y

2 belong to D(F ),
then the third also does and:∣∣∣∣∣F (x) + F (y)− 2 F ( x+y

2 )
d2(x , y)

∣∣∣∣∣ ≤ H, (5)

where H is a constant independent of x and y .
Sufficient condition: F and −F are λ-convex.

Gabriel Turinici (CEREMADE) Reinforcement learning ACDSDE Conference, Iasi, sept. 2023 27 / 40



Theoretical results for the VIM scheme

Hypothesis (standard):

• F is lower semicontinuous, bounded from below, and such that: ∀r >
0,∀c ∈ R, ∀x ∈ X the set {y ∈ X |F (y) ≤ c, d(x , y) ≤ r} is compact,
• F has the following continuity property
if xn → x , and sup{|∇F |(xn),E (xn)} <∞ then F (xn)→ F (x);

Theorem (G. Legendre, G.T. 2016)
Let T > 0 be fixed and (X , d) be a Polish metric space.
Under above hypotheses for some τ̄ > 0, the set of curves
{(x τt )t∈[0,T ]; 0 ≤ τ ≤ τ̄} is relatively compact (with respect to the local
uniform convergence) and any limit curve is a gradient flow in the EDI
formulation.

• this is consistency
• what about the (second) order of convergence ?
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Equilibrium metric flows: theoretical results (GT ’17)
• Hilbert space: ∂τξ(τ, t) +∇1C(ξ(τ, t), ξ(τ, t)) = 0; metric space
equivalent ?

• literature: ∇-flows for E (t, x): Ferreira-Valencia-Guevara ’15,
Rossi-Mielke-Savaré ’08, C. Jun ’12, Kopfer-Sturm ’16

• EDI (pointwise) formulation (G.T. ’17) [10]
d

dτ C(ξτ , ν)
∣∣∣
ν=ξτ

+ 1
2 |ξ
′
τ |

2 + 1
2 |∇1C|2 (ξτ , ξτ ) ≤ 0 a.e.

does not use convexity but uses regularity hypothesis for C.

• EVI formulation (G.T. ’17)
C(ξτ , ξτ ) + 1

2
d

dτ d2(ξτ , y) + λ
2 d2(ξτ , y) ≤ C(y , ξτ ), ∀y , a.e. τ ≥ 0.

does not use much regularity uses λ-convexity.

• both are the limit of numerical schemes (under hyp.)
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High order schemes : results by L. Laguzet

What about 2nd order schemes for metric gradient flows ? Cf. work by L.
Laguzet, 3 high order schemes inspired from Heun, RK3, RK4: [11]
The (standard, Hilbert space) Heun:

p1 = xk + τ f (tk , xk), xk+1 = xk + τ

2

[
f (tk , xk) + f (tk+1, p1)

]
.

The variational (metric space) Heun scheme

ξ̃k+1 ∈ argmin
η∈A

{
d(η, ξk)2

2τ + C(η, ξk)
}
, (6)

ξk+1 ∈ argmin
η∈A

{
d(η, ξk)2

2τ + 1
2C(η, ξk) + 1

2C(η, ξ̃k+1)
}
. (7)

Two minimizations are required in order to obtain ξk+1.
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Implicit stochastic schemes in finance (partially with P.
Brugiere)
• Financial application : portfolio optimization, maximize return∑

k π(k)Rt(k) (r.v.); r.v. Rt of mean R̄ and covariance Σ
• π is a distribution ( ∈ probability simplex), ”softmax” representation
π(a) = softmax(H) = eH(a)∑

b eH(b)

• we use implicit schemes to go from step t to step t + 1.
• to maximize FRt (H) =

∑
k πH(k)Rt(k), F (H) = ERt [

∑
k πH(k)Rt(k)]

• once Rt(k) is sampled for each k, FRt (·) is a bounded function of H;
moreover its gradient ∇HFRt (H) is also bounded :
∇HFRt (H) = (∇HFRt (H))K

a=1 = (∇Ha

∑
k Rt(k)πH(k))K

a=1
= (
∑

k Rt(k)πH(k)(1k=a − πH(a)))K
a=1 = Rt . ∗ πH − 〈Rt , πH〉πH (.∗ is the

elementwise product = Hadamard)
• Thus FRt is bounded, its gradient bounded (i.e. conditional on Rt)
• in finance one also includes some risk measures, and the reward will
rather be g(

∑
k π(k)Rt(k)), e.g., g(y) = y − λy2 (risk ∼ volatility),

g(y) = y − λ(y−)2 (risk ∼ drawdown),...
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Implicit stochastic schemes in finance (partially with P.
Brugiere)

• notation πt = softmax(Ht), τ = ”time” step
• explicit scheme
Ht+1 = Ht + τ∇HFRt (Ht) = Ht + τ(Rt . ∗ πt − 〈Rt , πt〉πt)
• ok for small τ , unstable otherwise, but what is ”small” τ ?
• How to write an implicit scheme ?
• implicit scheme candidate Ht+1 = Ht + τ(Rt . ∗ πt+1 − 〈Rt , πt+1〉πt+1)
• Does a solution exist ?
• Picard iterations for small τ ; using boundedness of the gradient Brower
for all τ ...
• asymptotic for τ →∞ ? explicit O(τ), implicit ?
• JKO approach, i.e. minimization : Ht+1 = arg min d(H,Ht )2

2τ − FRt (H)
• Consequences : existence for any τ , bound d(H,Ht)2 ≤ Cτ , asymptotic
behavior at most O(

√
τ)
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Implicit stochastic schemes in finance (partially with P.
Brugiere)

• how to find the solution ?
• Choice 1 : standard numerical algorithm
• Choice 2 : for small τ : Picard iterations on the critical point equations

• Choice 3: for all τ : use JKO again to minimize d(H,Ht)2

2τ − FRt (H)︸ ︷︷ ︸
the new function to minimize

Yl+1 = arg min d(Y ,Y`)2

2ρ +
(

d(Y ,Ht )2

2τ − FRt (Y )
)

, Y0 = Ht

Advantages: we choose the ρ; when ρ is small enough the minimum is
unique, the critical point equation = fixed point of a contraction =⇒
Picard; can limit the effort in the number of iterations in `.
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Numerical results for MAB (with Stefana Anita)

MAB : explicit update formula
Ht+1(a) = Ht(a) + α(Rt − R̄t)(1a=At − πt(a))

naive implicit update formula
Ht+1(a) = Ht(a) + α(Rt − R̄t)(1a=At − πt+1(a)), can be solved by Picard
for small α

For large α does this corresponds to a JKO-style minimization ?

Remark: the unbiasedness of the gradient is not discussed here yet, hence
the denomination ”semi-implicit”

JKO-style minimization
Ht+1 = arg min d(H,Ht )2

2α − (Rt − R̄t) log [softmax(H)(At)]
Ht+1 = arg min d(H,Ht )2

2α − (Rt − R̄t)
[
H(At)− log(

∑
a eH(a))

]
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Numerical results for MAB (with Stefana Anita)

Figure: Numerical results comparing the explicit and semi-implicit scheme. The semi-implicit
scheme appears more stable for large values of the step size and comparable for smaller values.
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