Regularized Policy Gradient Algorithm for the Multi Armed Bandit

Gabriel Turinici joint work with Ştefana-Lucia Aniţa

Dauphine | PSL CEREMADE CIS

CEREMADE Université Paris Dauphine - PSL, Paris, France

Numerical Analysis, Numerical Modeling, Approximation Theory (NA-NM-AT 2025, Nov. 3-6)

Introduction to Multi-Armed Bandits

Definition: The Multi-Armed Bandit (MAB) problem is a classic framework in **reinforcement learning**, where:

- An agent repeatedly chooses among multiple actions (e.g., pulling different slot machine arms), each giving some reward (random variable).
- The goal is to maximize the total reward over time.
- A balance must be struck between **exploration** (trying unknown actions) and **exploitation** (choosing the best-known action this far).

Multiple Applications:

- Optimizing online ad placements or A/B testing.
- Choosing the **best (happy hour) drink** in a bar without spending too much money.
- Allocating research funds to promising areas for maximum impact.

Softmax Policy Gradient MAB with L2 Regularization

Notations: The MAB has k arms (choices), each choice $a \le k$ outcome is stochastic with a reward distribution of mean $q_*(a)$. At each time t, the agent selects an arm A_t and observes a reward R_t sampled from the distribution of the arm A_t . The objective is to maximize the cumulative reward.

Softmax Policy: The agent maintains a preference vector $H \in \mathbb{R}^k$, defining the probability of selecting arm A through: $\Pi_H(A) = \frac{e^{H(A)}}{\sum_{a=1}^k e^{H(a)}}$.

Our version : regularized 'loss': goal is to maximize: $\mathcal{L}_{\gamma}(H) = \mathbb{E}_{A \sim \Pi_H} \left[R(A) - \frac{\gamma}{2} \|\mathbf{H}\|^2 \right]$, where $\gamma > 0$ is the L2 regularization coefficient.

Optimization algorithm : Policy gradient, a specific variant of Stochastic Gradient Ascent:

$$H_{t+1}(a) = H_t(a) + \rho_t [(R_t - \bar{R}_t)(\mathbb{1}_{a=A_t} - \Pi_{H_t}(a)) - \gamma H_t(a)],$$

with ρ_t = learning rate, \bar{R}_t = average reward so far.

Theoretical results : fixed or variable ρ_t , large γ

Proposition (Convergence conditions, fixed or variable ρ_t , large γ)

Assume $\mu := \gamma - (\max_a q_*(a) - \min_a q_*(a)) > 0$. Under appropriate hypotheses on distributions of arms A, there exists a unique optimum H_* . Moreover if

$$ho_t
ightarrow 0$$
 and $\sum_{t \geq 1}
ho_t = \infty.$ (1)

then

$$\lim_{t \to \infty} H_t \stackrel{\mathrm{L}^2}{=} H_*. \tag{2}$$

• Rq: many other results available in literature, cf. [2] and related works, but asymptotic & no regularization.

Theoretical results : "linear decay schedule" and small γ

Proposition (Convergence rate for "linear decay schedule")

Let $\beta_1,\beta_2>0$ two positive constants and take $\rho_t=\frac{\beta_1}{1+\beta_2t}$. Under the same hypotheses as before for γ large enough : there is a unique solution H_* and the L2 regularized policy gradient MAB algorithm converges with the rate :

$$\mathbb{E}[\|H_t - H_*\|^2] = O\left(\frac{1}{t}\right) \text{ as } t \to \infty.$$
 (3)

Question : optimum H^* will depend on γ , may pose problems, what about small γ ?

Lemma

Let $V(\gamma) := \max_{H \in \mathbb{R}^k} \mathcal{L}_{\gamma}(H)$. Then $\lim_{\gamma \to 0} V(\gamma) = V(0)$.

Numerical Simulations: Setup

Experiment Design (as in [3]):

- M = 1000 tests of 2000 steps each.
- k = 10 arms with rewards R(A) normally distributed: $R(A) \sim \mathcal{N}(q_*(A), 1)$, where $q_*(A)$ has mean 4 and unit variance.
- Initial distributions tested:
 - **Uniform**: Π_{H_0} with $H_0 = (0, ..., 0)$.
 - **Biased**: Π_{H_0} with $H_0 = (5, ..., 0)$.

Plot Reward Normalization:

• Reward is scaled relative to the maximum possible reward:

$$R_{\sf scaled} = rac{R}{{\sf max}_a \, q_*(a)} \quad ({\sf best \ reward} = 1).$$

Parameter Testing:

- Regularization coefficient: $\gamma \in \{0, 0.01, 10\}$.
- Learning rate: $\rho_t = 0.05$ or $\rho_t = \frac{1}{1+0.05t}$.

Results with constant learning step

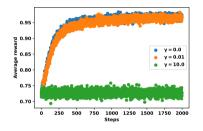




Figure: The average reward for $\rho_t = 0.05$ (constant), γ is 0, 0.01 or 10 (see the legend). **Left**: start from a uniform distribution Π_{H_0} with $H_0 = (0, ..., 0)$. **Right**: start from a biased distribution Π_{H_0} with $H_0 = (5, ..., 0)$.

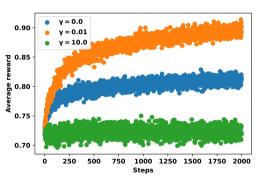
Uniform Start ($H_0 = (0, ..., 0)$):

- $\gamma = 0.01$ achieves comparable performance to $\gamma = 0$.
- $\gamma = 10$ biases the solution and reduces performance.

Biased Start $(H_0 = (5, ..., 0))$:

- $\gamma = 0.01$ improves performance over $\gamma = 0$.
- ullet $\gamma=10$ remains suboptimal.

Results with linear decaying ρ_t



- Biased Start $(H_0 = (5, ..., 0))$:
- Learning rate: $\rho_t = \frac{1}{1+0.05t}$ (linear decay schedule).
- Comparison of $\gamma = 0$ or 0.01 or 10.

Observations:

- $\gamma = 0.01$ achieves good performance, improving initial convergence.
- $\gamma=10$ is too large, leading to suboptimal results.
- Decay of ρ_t helps transition from initial exploration to final convergence.

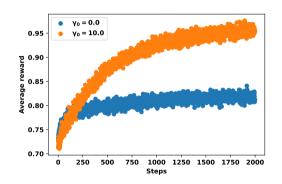
Summary of numerical results, further tests

Empirical results so far:

- Convergence occurs as predicted by the theory.
- For non-uniform initial guesses H_0 : regularization i.e., $\gamma > 0$ improves convergence significantly.
- large γ may lead to suboptimal limit points H^* .

Further idea: best of the two worlds : variable $\rho_t = \frac{1}{1+0.05*t}$ and $\gamma_t = \frac{\gamma_0}{1+0.2:t}$:

- Combines exploration and final convergence.
- $\gamma_0 > 0$ (orange in figure) outperforms non-regularized case $\gamma_0 = 0$ (blue).



Theoretical results : decreasing γ

Proposition (Convergence conditions, decreasing γ , SA & GT 2025)

Assume $\gamma_t \downarrow \bar{\gamma}$ and ρ_t such that it $\sum_t \rho_t = \infty$ and $\sum_t \rho_t^2 < \infty$. Under appropriate hypotheses on the distributions of arms A:

$$\sum_{t\geq 0} \rho_t \mathbb{E}[\|\nabla_H \mathcal{L}_{\gamma_t}(H_t)\|^2] < \infty \tag{4}$$

and therefore on a sub-sequence:

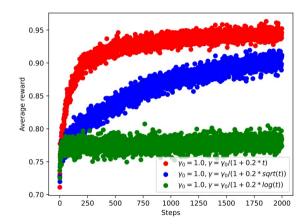
$$\lim_{\ell \to \infty} \nabla_{H} \mathcal{L}_{\gamma_{t_{\ell}}}(H_{t_{\ell}}) \stackrel{L^{2}}{=} 0.$$
 (5)

Remark

Work in progress: alternative results (asymptotic) for constant $\rho_t = \rho$.

Further numerical tests: γ regimes

Non-constant γ_t : we test several decay schedules: 'linear', logarithmic, square root... Not all behave the same, the 'linear' regime seems to be best for this parameter set.



Summary of theoretical and numerical results

Objective: we investigate a *L*2-regularized policy gradient algorithm for Multi-Armed Bandit (MAB).

Theoretical Results [1]:

- **Proposition 1:** Convergence established for both constant and variable step sizes (ρ_t) .
- **Proposition 2:** Convergence rate proven to be $\mathcal{O}(1/t)$ for linear decay of ρ_t .
- Lemma 1: Regularization may shift the optimum but optimality is restored as $\gamma \to 0$.

Key Takeaway (theoretical and numerical): regularization helps improve convergence especially when starting far from optimality; it can be adjusted dynamically if needed.

Future Work: The convergence result for a decaying γ_t needs to be improved (optimality on the full sequence).

References I

Ştefana-Lucia Aniţa and Gabriel Turinici.

Convergence of a L2 regularized policy gradient algorithm for the multi armed bandit. In *International Conference on Pattern Recognition*, pages 407–422. Springer, 2024.

Jincheng Mei, Zixin Zhong, Bo Dai, Alekh Agarwal, Csaba Szepesvari, and Dale Schuurmans.

Stochastic gradient succeeds for bandits.

In International Conference on Machine Learning, pages 24325–24360. PMLR, 2023.

Richard S Sutton, Andrew G Barto, et al.

Reinforcement learning: An introduction, volume 1.

MIT press Cambridge, 1998.