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Introduction to Multi-Armed Bandits

Definition: The Multi-Armed Bandit (MAB) problem is a classic framework in reinforcement
learning, where:

An agent repeatedly chooses among multiple actions (e.g., pulling different slot machine
arms), each giving some reward (random variable).

The goal is to maximize the total reward over time.

A balance must be struck between exploration (trying unknown actions) and
exploitation (choosing the best-known action this far).

Multiple Applications:

Optimizing online ad placements or A/B testing.

Choosing the best (happy hour) drink in a bar without spending too much money.

Allocating research funds to promising areas for maximum impact.
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Softmax Policy Gradient MAB with L2 Regularization

Notations: The MAB has k arms (choices), each choice a ≤ k outcome is stochastic with a
reward distribution of mean q∗(a). At each time t, the agent selects an arm At and observes a
reward Rt sampled from the distribution of the arm At . The objective is to maximize the
cumulative reward.

Softmax Policy: The agent maintains a preference vector H ∈ Rk , defining the probability of

selecting arm A through: ΠH(A) =
eH(A)∑k
a=1 e

H(a)
.

Our version : regularized ’loss‘: goal is to maximize: Lγ(H) = EA∼ΠH

[
R(A)− γ

2∥H∥2
]
,

where γ > 0 is the L2 regularization coefficient.
Optimization algorithm : Policy gradient, a specific variant of Stochastic Gradient
Ascent:

Ht+1(a) = Ht(a) + ρt
[
(Rt − R̄t)(1a=At − ΠHt (a))− γHt(a)

]
,

with ρt = learning rate, R̄t = average reward so far.
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Theoretical results : fixed or variable ρt , large γ

Proposition (Convergence conditions, fixed or variable ρt , large γ)

Assume µ := γ − (maxa q∗(a)−mina q∗(a)) > 0. Under appropriate hypotheses on
distributions of arms A, there exists a unique optimum H∗. Moreover if

ρt → 0 and
∑
t≥1

ρt = ∞. (1)

then

lim
t→∞

Ht
L2

= H∗. (2)

• Rq: many other results available in literature, cf. [2] and related works, but asymptotic & no
regularization.
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Theoretical results : “linear decay schedule” and small γ

Proposition (Convergence rate for “linear decay schedule”)

Let β1, β2 > 0 two positive constants and take ρt =
β1

1+β2t
.Under the same hypotheses as

before for γ large enough : there is a unique solution H∗ and the L2 regularized policy gradient
MAB algorithm converges with the rate :

E[∥Ht − H∗∥2] = O

(
1

t

)
as t → ∞. (3)

Question : optimum H∗ will depend on γ, may pose problems, what about small γ ?

Lemma

Let V (γ) := maxH∈Rk Lγ(H). Then limγ→0 V (γ) = V (0).
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Numerical Simulations: Setup

Experiment Design (as in [3]):

M = 1000 tests of 2000 steps each.

k = 10 arms with rewards R(A) normally distributed: R(A) ∼ N (q∗(A), 1), where q∗(A)
has mean 4 and unit variance.
Initial distributions tested:

Uniform: ΠH0 with H0 = (0, . . . , 0).
Biased: ΠH0 with H0 = (5, . . . , 0).

Plot Reward Normalization:

Reward is scaled relative to the maximum possible reward:

Rscaled =
R

maxa q∗(a)
(best reward = 1).

Parameter Testing:

Regularization coefficient: γ ∈ {0, 0.01, 10}.
Learning rate: ρt = 0.05 or ρt =

1
1+0.05t .
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Results with constant learning step
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Figure: The average reward for ρt = 0.05 (constant), γ is 0, 0.01 or 10 (see the legend). Left : start from a uniform
distribution ΠH0

with H0 = (0, ..., 0). Right : start from a biased distribution ΠH0
with H0 = (5, ..., 0).

Uniform Start (H0 = (0, . . . , 0)):

γ = 0.01 achieves comparable
performance to γ = 0.

γ = 10 biases the solution and reduces
performance.

Biased Start (H0 = (5, . . . , 0)):

γ = 0.01 improves performance over
γ = 0.

γ = 10 remains suboptimal.
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Results with linear decaying ρt
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Biased Start (H0 = (5, . . . , 0)):

Learning rate: ρt =
1

1+0.05t (linear decay
schedule).

Comparison of γ = 0 or 0.01 or 10.

Observations:

γ = 0.01 achieves good performance,
improving initial convergence.

γ = 10 is too large, leading to
suboptimal results.

Decay of ρt helps transition from initial
exploration to final convergence.
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Summary of numerical results, further tests
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Empirical results so far:

Convergence occurs as predicted by the
theory.

For non-uniform initial guesses H0:
regularization i.e., γ > 0 improves
convergence significantly.

large γ may lead to suboptimal limit
points H∗.
Further idea: best of the two worlds :
variable ρt =

1
1+0.05∗t and γt =

γ0
1+0.2·t :

Combines exploration and final
convergence.

γ0 > 0 (orange in figure) outperforms
non-regularized case γ0 = 0 (blue).
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Theoretical results : decreasing γ

Proposition (Convergence conditions, decreasing γ, SA & GT 2025)

Assume γt ↓ γ̄ and ρt such that it
∑

t ρt = ∞ and
∑

t ρ
2
t < ∞. Under appropriate hypotheses

on the distributions of arms A: ∑
t≥0

ρtE[∥∇HLγt (Ht)∥2] < ∞ (4)

and therefore on a sub-sequence:

lim
ℓ→∞

∇HLγtℓ
(Htℓ)

L2

= 0. (5)

Remark

Work in progress: alternative results (asymptotic) for constant ρt = ρ.
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Further numerical tests: γ regimes
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Non-constant γt : we test several decay
schedules: ’linear’, logarithmic, square root...
Not all behave the same, the ’linear’ regime
seems to be best for this parameter set.
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Summary of theoretical and numerical results

Objective: we investigate a L2-regularized policy gradient algorithm for Multi-Armed Bandit
(MAB).

Theoretical Results [1]:

Proposition 1: Convergence established for both constant and variable step sizes (ρt).

Proposition 2: Convergence rate proven to be O(1/t) for linear decay of ρt .

Lemma 1: Regularization may shift the optimum but optimality is restored as γ → 0.

Key Takeaway (theoretical and numerical): regularization helps improve convergence
especially when starting far from optimality; it can be adjusted dynamically if needed.

Future Work: The convergence result for a decaying γt needs to be improved (optimality on
the full sequence).
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