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Introduction to Multi-Armed Bandits

Definition: The Multi-Armed Bandit (MAB) problem is a classic framework in reinforcement
learning, where:

@ An agent repeatedly chooses among multiple actions (e.g., pulling different slot machine
arms), each giving some reward (random variable).

@ The goal is to maximize the total reward over time.

@ A balance must be struck between exploration (trying unknown actions) and
exploitation (choosing the best-known action this far).

Multiple Applications:
@ Optimizing online ad placements or A/B testing.
@ Choosing the best (happy hour) drink in a bar without spending too much money.

@ Allocating research funds to promising areas for maximum impact.
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Softmax Policy Gradient MAB with L2 Regularization

Notations: The MAB has k arms (choices), each choice a < k outcome is stochastic with a
reward distribution of mean g.(a). At each time t, the agent selects an arm A; and observes a
reward R; sampled from the distribution of the arm A;. The objective is to maximize the
cumulative reward.

Softmax Policy: The agent maintains a preference vector H € R¥, defining the probability of
cH(A)

Z::l eH(a) :

Our version : regularized 'loss': goal is to maximize: £(H) = Ea-n, [R(A) — 3
where v > 0 is the L2 regularization coefficient.

Optimization algorithm : Policy gradient, a specific variant of Stochastic Gradient
Ascent:

selecting arm A through: My(A) =
H|?],

Hiy1(a) = He(a) + Pt[(Rt - K’t)(ﬂa:At — Ny (a) - th(a)],

with p; = learning rate, R; = average reward so far.
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Theoretical results : fixed or variable p;, large ~

Proposition (Convergence conditions, fixed or variable p;, large 7)

Assume p := 7 — (max, g«(a) — min, g.(a)) > 0. Under appropriate hypotheses on
distributions of arms A, there exists a unique optimum H,. Moreover if

pt — 0 and Zpt:oo. (1)
t>1
then
) 1.2
lim H; = H,. (2)
t—o0

e Rq: many other results available in literature, cf. [2] and related works, but asymptotic & no
regularization.
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Theoretical results : “linear decay schedule” and small

Proposition (Convergence rate for “linear decay schedule™)

Let 1,82 > 0 two positive constants and take p: = %@.Under the same hypotheses as

before for v large enough : there is a unique solution H, and the L2 regularized policy gradient
MAB algorithm converges with the rate :

E[|H; — H, %] = O (1) as ¢ = oo. (3)

Question : optimum H* will depend on , may pose problems, what about small v 7

Let V() := maxyerk L(H). Then lim,_o V(v) = V(0).
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Numerical Simulations: Setup

Experiment Design (as in [3]):
@ M = 1000 tests of 2000 steps each.
@ k =10 arms with rewards R(A) normally distributed: R(A) ~ N (g«(A), 1), where q.(A)
has mean 4 and unit variance.
@ Initial distributions tested:
o Uniform: Mgy, with Hy = (0,...,0).
o Biased: My, with Hy = (5, ...,0).
Plot Reward Normalization:
@ Reward is scaled relative to the maximum possible reward:

R
Rscaled = ————  (best reward = 1).
max, g«(a)

Parameter Testing:
@ Regularization coefficient: v € {0,0.01,10}.

@ Learning rate: p; = 0.05 or p; = ﬁ-
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Results with constant learning step

5 0.90 5 090
s s

i i
P e y=0.01 5 0857
K o y=10.0 2

g 0.80 ] ]
H 3080

0 250 500 750 1000 1250 1500 1750 2000

0 250 500 750 1000 1250 1500 1750 2000
Steps

Steps

Figure: The average reward for p; = 0.05 (constant), ~y is 0, 0.01 or 10 (see the legend). Left : start from a uniform
distribution My, with Ho = (0, ...,0). Right : start from a biased distribution My, with Hy = (5, ..., 0).

Uniform Start (Hp = (0,...,0)): Biased Start (Hy = (5,...,0)):
@ v = 0.01 achieves comparable @ v = 0.01 improves performance over
performance to v = 0. v=0.
@ v = 10 biases the solution and reduces @ v = 10 remains suboptimal.
performance.
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Results with linear decaying p;

e Biased Start (Hy = (5,...,0)):

@ Learning rate: p; = ﬁ (linear decay
schedule).
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@ Comparison of v =0 or 0.01 or 10.
Observations:

Average reward
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0
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@ v = 0.01 achieves good performance,
improving initial convergence.

e
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Steps suboptimal results.

o Decay of p; helps transition from initial
exploration to final convergence.
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Summary of numerical results, further tests

Empirical results so far:

@ Convergence occurs as predicted by the

theory.
@ For non-uniform initial guesses Hpy: 0.95 1
regularization i.e., v > 0 improves
. T 0.90 -
convergence significantly. g
o
. .. > 0.851
@ large v may lead to suboptimal limit )
points H*. £ 0.804
Further idea: best of the two worlds : 0.75
; _ 1 — Yo .
variable p; = 10,0571 and v; = 17057 ool
Py Combines exploration and ﬁna| 0 250 500 750 1000 1250 1500 1750 2000
Steps
convergence.

@ 7o > 0 (orange in figure) outperforms
non-regularized case 79 = 0 (blue).
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Theoretical results : decreasing ~y

Proposition (Convergence conditions, decreasing 7y, SA & GT 2025)

Assume ¢ | 5 and py such that it >, pr = 0o and Y, p? < co. Under appropriate hypotheses
on the distributions of arms A:

> DBl VL (He)|[] < oo ()

t>0

and therefore on a sub-sequence:

. L2
Jim VLo, (Hy) = 0. (5)

Work in progress: alternative results (asymptotic) for constant p: = p. ]
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Further numerical tests: ~ regimes
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Summary of theoretical and numerical results

Objective: we investigate a L2-regularized policy gradient algorithm for Multi-Armed Bandit
(MAB).

Theoretical Results [1]:
e Proposition 1: Convergence established for both constant and variable step sizes (p;).

e Proposition 2: Convergence rate proven to be O(1/t) for linear decay of p;.

@ Lemma 1: Regularization may shift the optimum but optimality is restored as v — 0.

Key Takeaway (theoretical and numerical): regularization helps improve convergence
especially when starting far from optimality; it can be adjusted dynamically if needed.

Future Work: The convergence result for a decaying 7+ needs to be improved (optimality on
the full sequence).
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