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Introduction and motivation

• we are concerned with GENERATIVE algorithms i.e. that create new
objects (e.g., images) based on some database
• We want to avoid repetitions and enforce diversity in this creation, like
human painters do not paint twice same painting, have ”periods”, same
for writers, musicians, ...

Famous painters have
”periods” : here Pablo
Picasso’s rose, blue,
cubism, surrealism pe-
riods.

(from https://mymodernmet.com/pablo-picasso-periods/)
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Introduction and motivation: mathematical framework

• Given : empirical database µe = 1
M

∑M
`=1 δx` sampling from unknown

distribution µ (x` ∼ µ).
• Goal: construct samples as µ

Example: sampling from 2D Gaussian distribution results in
most samples in the red part.

• Problem : samples are often not so diverse; example for a GAN / VAE,
sampling is done from the latent distribution with replacement.

• Idea: make the algorithm keep the memory of previous actions and thus
instaurate irreversibility (and dependence of the past) in the choices, that
we call ”age”.
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Introduction and motivation: technical framework

• Idea: make the algorithm keep the memory of previous actions and thus
instaurate irreversibility (and dependence of the past) in the choices, that
we call ”age”.

• Question: what is µ in practice ?

Variational Autoencoder (VAE) struc-
ture: the available data is used to
train two networks (encoder and de-
coder) to reproduce it and obtain a
reference distribution (here in yellow)
on the latent space; then in the gen-
eration phase the decoder is used to
create new data.
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Technical ingredients

Goal: incremental procedure
- find K new samples (K Dirac masses centered at some xk , k = 1, ...,K )
from the target measure µ

- takes into account the historical points points Y = (yj)
Kp

j=1 (already
available): ”only add what is missing”

Mathematical formulation

Find the multi-point X = (xk)Kk=1 ∈ RN×K (k = 1, ...,K ) that minimizes

the distance from the total empirical distribution
∑Kp

k=1 δyk +
∑K

l=1 δxk
Kp+K to the

target measure µ (yk are given).

Equivalent formulation : minimize X 7→ dist(δX , η)2, (1)

where δX := 1
K

∑K
l=1 δxk , δY = 1

Kp

∑Kp

k δyk , η =
(Kp+K)µ−KpδY

KP+K .

Remarks: Y is given (previous choices), η is a signed measure !
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Technical how-to

Questions:
• how to compute X 7→ dist(δX , η)2

• how to minimize it ?

Distance: use a conditionally negative definite kernel h :

d(η1, η2)2 =

∫ ∫
h(|X − Y |)(η1 − η2)(dX )(η1 − η2)(dY ). (2)

In particuler for discrete distributions ηi =
∑Ki

k=1 p
i
kδz ik

:

d(η1, η2)2 =

K1∑
k=1

K2∑
`=1

p1
kp

2
` h(|z1

k − z2
` |). (3)
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Statistical distances: conditionally negative kernels

Question: what function h to choose ?

Definition (conditional negative definite)

A kernel h(·, ·) is said to be conditionally negative definite if for any I ∈ N,
p1, ..., pI with

∑
pi = 0 and any x1, ..., xI :

∑
i ,j pipjh(xi , xj) ≤ 0.

−h is also said to be a (conditionally) positive definite kernel.

Theorem (”Gini difference” Gini 1912; ”energy distance” Szekelly
1985, 2002; ”maximum mean discrepancy” Gretton 2007,
Radon-Sobolev G.T. 2021 [4])

The kernel h(x) = |x | is conditionally negative definite.

Rq: many other kernels are known to be conditionally negative definite:
Gaussian, etc.
Historical idea: the ”energy distance” builds on the Newton’s potential
energy concept, cf Szekely 2002.
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Statistical distances: conditionally negative kernels

Proof (GT 2021 version).

Radon transform of the dual of the homogeneous Sobolev space Ḣ1: take
all directions on the unit sphere, project, measure in Ḣ−1, sum up:
d(µ, ν)2 = 1

area(S)

∫
S ‖θ#µ− θ#ν‖2

Ḣ−1dθ. Obviously positive,
non-degenerate by properties of the Radon transform.

When d(δx , δy )2 = |x − y |, one minimizes terms involving | · | (not | · |2) :
gradient descent methods experience instabilities as the differential is x

|x |2 .

Theorem (Schoenberg 1938 [2], Micchelli 1984 [1], GT 2021 [5])

For any a ≥ 0, α ∈]0, 1[, the kernels h(x) = (a2 + |x |2)α − a2α and

h(x) = ‖x2‖
(a2+|x |2)α

are conditionally negative definite and can be expressed

explicitly as a Gaussian mixture. In particular this is true for
√
a2 + x2 − a.

Rq: the proof extends to a larger family of kernels.
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Theoretical existence results

Proposition

Suppose K is a fixed positive integer. Let η be a signed measure such that∫
(1 + |X |)η(dX ) <∞ . For any vector Z = (zj)

J
j=1 ∈ RN×J denote

δZ :=
1

J

J∑
j=1

δzj , f (Z ) := disth=|·| (δZ , η)2 . (4)

Then the minimization problem :

inf
X=(xk )Kk=1∈RN×K

f (X ) (5)

admits at least one solution.

Gabriel Turinici (Univ. Paris Dauphine, PSL) Old algo Italy, September 18 – 22, 2022 11 / 19



12/19

Stochastic minimization algorithm

History aware (signed measure) compression algorithm : HAW-C

set batch size B, parameter a = 10−6,

load the historical points yk , k = 1, ...,Kp

initialize points xk , k = 1, ...,K sampled at random from µ, denote
X = (xk)Kk=1 (considered as vector in RN×K )

while max iteration not reached

sample z1, ..., zB ∼ µ (i.i.d).
compute the global loss a using formula (3) :

L(X ) := d
(

1
K

∑K
l=1 δxk ,

Kp+1
B

∑B
b=1 δzb −

∑Kp

j=1 δyj

)2

;

backpropagate the loss L(X ) in order to minimize L(X ) and update X .

aThe global loss = distance from δX = 1
K

∑K
l=1 δxk and η.

• deterministic optimization when x 7→ Ey∼µh(x − y) has a closed form (e.g. normal mixture)

• ML / stochastic optimization algorithms (e.g. SGD, Adam, momentum, ...) when the

database is large: compute a noisy gradient using batches/sampling from the database.
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Diverse but history unaware sampling of a 2D Gaussian

Figure: 2D Gaussian (credits: Wikipedia)
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Figure: Example of compression with K = 17
points of a 2D Gaussian using special statistical
distances (cf. [4]).
Presence of a three layers point structure: inner
2, middle 7, outer 8 (from [5]).
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Diverse but history unaware sampling of a 2D Gaussian
mix distribution
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Figure: Test without any historical points, Kp = 0. An example of compression for
an uniform Gaussian mixture of 16 Gaussians centered on points of a 4× 4 grid
(red points are the centers of the Gaussians, blue points are the compressed
points). We used K points to summarize the distribution : K = 48 (left image)
or K = 3 (right image). Good quality results are obtained as the algorithm
”understands” the mixing structure: for instance for K = 48 the algorithm
allocates precisely 3 points per Gaussian mixture term.
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Application: diverse sampling from a large database (here
MNIST, FMNIST)

Compression of a multi-D Gaussian is used to sample from the latent
space.

Figure: Left: MNIST samples (25 out of 60’000). Right: Fashion MNIST samples (25 out of
60’000), from [4]

Gabriel Turinici (Univ. Paris Dauphine, PSL) Old algo Italy, September 18 – 22, 2022 16 / 19



17/19

History aware multi-dimensional Gaussian compression
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Figure: An example of diverse and history aware (recursive compression) of a 2D
standard Gaussian; the result of the compression after 10 iterations. Each point
ui is labeled by its corresponding index i when it was found.
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Multi-dimensional Gaussian compression for ”old”
generative algorithms

Images using standard cVAE (cf. Tensorow documenta-

tion) obtained by taking either a random sampling of 10

points from a 2D Gaussian (top image) or the sampling

obtained in figure 5 (bottom image). The bottom image

appears more faithful of the database.

Results of the same procedure on an improved network

(512 filters / 20 epochs): top image : random sampling;

bottom image : decoding of the incremental sampling.

The top image has several repetitions (for instance figure

7) that are absent from the bottom figure but more im-

portantly, some figures abundant in the database and not

present in the top figure appear in the other one, like the

figures 1 and 6.
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