Reduced representations of non linear manifolds: from reduced basis to (conditional) vector quantization of measures

Gabriel Turinici

CEREMADE
Université Paris Dauphine - PSL
Paris, France

The Tenth Congress of Romanian Mathematicians
Pitești, June 30 - July 5th, 2023

Outline

(1) Motivation

(2) Quantization: tools and algorithms

(3) Theoretical questions

- Existence
- Conditional quantization
(4) Application to a transport equation
- Quantization of the transport equation

Motivation: latent dimension in high dimensional objects

- Parametric PDE : for $\omega \in \Omega=$ parameter, the solution $u_{\omega}(\cdot)$ of a parametric PDE needs to be computed for many values of ω.
- reduced basis idea: when some linearity is present : $\left(\mathcal{T}_{0}+\omega \mathcal{T}_{1}\right) u_{\omega}=0$, e.g. $\mathcal{T}=-\Delta, \mathcal{T}_{1}=f$ try to solve the PDE in a small reduced basis made by previously computed solutions $u_{\omega_{q}}$ i.e., on $W_{Q}=\operatorname{span}\left\{u_{\omega_{q}}, q=1, . ., Q\right\}$. Typically $Q \simeq 10-100$.
- offline-online decomposition: if the operators $\mathcal{T}_{i}(i=0,1)$ are precomputed in W_{Q}, then finding the solution u_{ω} is extremely fast.
- beyond linear setting : cf. [1] and related works.

Motivation: latent dimension in high dimensional objects

- Questions : does this work ? how to choose ω_{q} ?
- Answers: ok for the 1D linear case, ok for multi-linear. In general ok if the set of solutions $\left\{u_{\omega} ; \omega \in \Omega\right\}$ will have a small Kolmogorov n-width (cf [2] and subsequent literature).
Recall n-width of a set S in a space H measures how well S is approximated by linear space of dimension n :
$d_{n}(S, H)=\inf _{H_{n} \subset H, \operatorname{dim}\left(X_{n}\right)=n} \sup _{u \in S} \inf _{v_{n} \in H_{n}}\left\|u-v_{n}\right\|$.

- Related idea: proper orthogonal decomposition (POD) : (some related) eigenvalues decay fast.

Motivation: latent dimension in high dimensional objects

- Remark : max-norm is used, sensitive to outliers : one point can change the n-width ... not robust.

- alternative form : some average over the solutions $\int F\left(\omega, u_{\omega}\right) \rho(\omega) d \omega$: $\rho(\omega)$ is a probability density over Ω
quadrature formula $\int F\left(\omega, u_{\omega}\right) \rho(\omega) d \omega \simeq \sum_{q} w_{q} F\left(\omega_{q}, u_{\omega_{q}}\right)$.
How to choose representative points $u_{\omega_{q}}$?
- Quantization : procedure similar to clustering and compression

Figure: Left: example of clustering. Middle and right: compression of the middle image into the right image (credits: Wikipedia)

Motivation: summarize information from a set of objects

Example 1: alternative to Monte Carlo to approximate integrals over high dimensional spaces: for $\int_{\Omega} f(\omega) \rho(\omega) d \omega$ it is good to have a sample $\frac{1}{K} \sum_{k=1}^{K} \delta_{\omega_{k}}$ close, as measure, to $\rho(\omega) d \omega$: if $\rho(\omega) d \omega \simeq \frac{1}{K} \sum_{k=1}^{K} \delta_{\omega_{k}}$ then $\int_{\Omega} f(\omega) \rho(\omega) d \omega \simeq \frac{1}{K} \sum_{k=1}^{K} f\left(\omega_{k}\right)$

- lower dimensional objects : quadrature;
- more exotic objects: ω (a curve) is a realization of a $W_{t}=$ Brownian mvt. "cubature". $\int f\left(t, W_{t}\right) d W_{t}$

Figure: Example of cubature "points" for a Brownian motion, from [5].

Motivation: summarize information from a set of objects

Example 2: summarize a distribution with K points, e.g. 2D Gaussian.

Figure: Example of compression with $K=17$ points of a 2D Gaussian using special statistical
Figure: 2D Gaussian (credits: Wikipedia)distances (cf. [7]).
Presence of a three layers point structure: inner 2, middle 7, outer 8 (from [6]).

Motivation: summarize information from a set of objects

Example 3: summarize a large database of objects (e.g. MNIST, FMNIST, CIFAR10, ...)

Figure: Left: MNIST samples (25 out of 60'000). Right: Fashion MNIST samples (25 out of 60'000), from [7]

Outline

(1) Motivation

(2) Quantization: tools and algorithms
(3) Theoretical questions

- Existence
- Conditional quantization

4 Application to a transport equation

- Quantization of the transport equation

Quantization : tools and algorithms: idea

- Goal: quantize a finite Borel measure μ (usually a probability measure).
- Idea: minimize $\operatorname{dist}\left(\frac{1}{K} \sum_{k=1}^{K} \delta_{x_{k}}, \mu\right)^{2}$.
- Naive idea : $\operatorname{dist}\left(\delta_{x}, \delta_{y}\right)^{2}=\|x-y\|^{2}$ then by linearity (Hilbert)

$$
\begin{equation*}
\operatorname{dist}(\mu, \nu)^{2}=(c s t) \int\|x-y\|^{2}(\nu-\mu)(d x)(\nu-\mu)(d y)=\left(\mathbb{E}_{\mu}-\mathbb{E}_{\nu}\right)^{2} \tag{1}
\end{equation*}
$$

μ, ν are measures; only average object is reproduced $\left(\operatorname{dist}\left(\mu, E_{\mu}\right)=0!\right) \ldots$
Denote $h(x, y)=d\left(\delta_{x}, \delta_{y}\right)^{2}$; often $h(x, y)=h(|x-y|)$ (translation and rotation invariant kernel) $h(x)=$ important function to choose.

Statistical distance: $d^{2}(\mu, \nu)=-\frac{1}{2} \int h(x, y)(\mu-\nu)(d x)(\mu-\nu)(d y)$
Example $h=|\cdot|: d^{2}\left(\frac{1}{K} \sum_{k=1}^{K} \delta_{x_{k}}, \mu\right)=\left(c(h, \mu)-\frac{1}{2 K^{2}} \sum_{k \neq 1}^{K}\left|x_{k}-x_{\mid}\right|+\frac{1}{K} \sum_{k=1}^{K} g_{\mu}\left(x_{k}\right)\right)$

Energy distance: historical parenthesis

- Historical idea: the "energy distance" builds on the Newton's potential energy concept, cf Szekely 2002.
- Gravitational potential energy of an object at distance R from another behaves like $-1 / R$; but when an object is close to a surface (e.g., on earth of radius R at height $H \ll R$) this behaves like $+H$.
- work required to lift at height H is cst $\cdot H$. Modern concept: gravity battery that stores potential gravitational energy.
- other vision: viewer from other galaxy at distance ξ, to summarize the solar system (centered at 0) : potential energy with respect to a planet at $x:-\frac{1}{\|\xi\|}-\left(-\frac{1}{\|\xi-x\|}\right)=O\left(\frac{\langle x, \xi\rangle}{\|\xi\|}\right)$.

Statistical distances: conditionally negative kernels

Question: h defines a proper distance ? Which is better ?

Definition (conditionally negative definite)

A kernel $h(\cdot, \cdot)$ is said to be conditionally negative definite if for any $I \in \mathbb{N}$, p_{1}, \ldots, p_{l} with $\sum p_{i}=0$ and any $x_{1}, \ldots, x_{l}: \sum_{i, j} p_{i} p_{j} h\left(x_{i}, x_{j}\right) \leq 0$.
this would correspond to $\operatorname{dist}\left(\sum_{i, p_{i}>0}\left|p_{i}\right| \delta_{x_{i}}, \sum_{i, p_{i}<0}\left|p_{i}\right| \delta_{x_{i}}\right)^{2} \geq 0$
Theorem (" Gini difference" Gini 1912; "energy distance" Szekelly 1985, 2002; "maximum mean discrepancy" Gretton 2007, Radon-Sobolev G.T. 2021 [7])
The kernel $h(x)=|x|$ is conditionally negative definite.
Rq: many other kernels are known to be conditionally negative definite: Gaussian, etc.

Compatibile kernels : sliced Sobolev idea

- Idea: measures are dual of continous functions,
- use Sobolev embeddings and dual norm
- find a Sobolev space H^{s} containing continous functions regularity vs dimension problem. !!
- in 1D good candidate: \dot{H}^{1} : functions with L^{2} gradient, quotient $f \sim f+$ cst, norm $\|\nabla f\|^{2}$
- second idea : slicing: project on lines $\theta \# \mu=$ projection on line θ; Radon the: if all projections are the same measures are the same.

DAUPHINE Cerempe

Statistical distances: conditionally negative kernels

Proof (GT 2021 version).

Radon transform of the dual of the homogeneous Sobolev space \dot{H}^{1} : take all directions on the unit sphere, project, measure in \dot{H}^{-1}, sum up: $d(\mu, \nu)^{2}=\frac{1}{\operatorname{area}(\mathbb{S})} \int_{\mathbb{S}}\left\|\theta_{\#} \mu-\theta_{\#} \nu\right\|_{\dot{H}^{-1}}^{2} d \theta$. Obviously positive, non-degenerate by properties of the Radon transform.

When $d\left(\delta_{x}, \delta_{y}\right)^{2}=|x-y|$, one minimizes terms involving $|\cdot|\left(\right.$ not $\left.|\cdot|^{2}\right)$: gradient descent methods experience instabilities as the differential is $\frac{x}{|x|^{2}}$.

Theorem (Schoenberg 1938 [4], Micchelli 1984 [3], GT 2021 [6])

For any $a \geq 0, \alpha \in] 0,1\left[\right.$, the kernels $h(x)=\left(a^{2}+|x|^{2}\right)^{\alpha}-a^{\alpha}$ and $h(x)=\frac{\|x\|^{2}}{\left(a+|x|^{2}\right)^{\alpha}}$ are conditionally negative definite and can be expressed explicitly as a Gaussian mixture. In particular this is true for $\sqrt{a^{2}+x^{2}}-a$.

Rq: the proof extends to a larger family of kernels.

Quantization tools and algorithms：in practice

Implementation ：minimize $X=\left(x_{1}, \ldots, x_{K}\right) \mapsto d^{2}\left(\frac{1}{K} \sum_{k=1}^{K} \delta_{x_{k}}, \mu\right)$
－deterministic optimization techniques when $x \mapsto \mathbb{E}_{y \sim \mu} h(x-y)$ has a closed form（e．g．normal mixture）
－ML／stochastic optimization algorithms（e．g．SGD，Adam，momentum， ．．．）when the database is large：compute a noisy gradient using batches／sampling from the database．BLUE estimators（i．e．，minimal variance GT 23）．．．

Figure：Measure compression results，from［6］．
Left ：MNIST compression with $K=10$ samples：we computed the compression then took closest from the database．Note that algorithm chooses by itself to represent the each figure exactly once．Right ： 16 2D Gaussians on a grid compressed with $K=16 * 3$ points．

Outline

(1) Motivation

(2) Quantization: tools and algorithms

(3) Theoretical questions

- Existence
- Conditional quantization
(4) Application to a transport equation
- Quantization of the transport equation

Theoretical questions

- Existence: does the minimization of $X=\left(x_{1}, \ldots, x_{Q}\right) \mapsto d^{2}\left(\frac{1}{Q} \sum_{q=1}^{Q} \delta_{x_{q}}, \mu\right)$ has a solution ?
- problem with the intuition : for $h=\|x\|$: the measure $1 / a \delta_{a^{2}}+(a-1) / a \delta_{0}$ is at distance 1 from δ_{0} even as $a \rightarrow \infty!!$ The neighborhood of the origin does not contain only bounded support measures ...
- similar problem : $v: \Omega \rightarrow \mathcal{H}$ continuous, is $\inf _{\omega \in \Omega^{Q}}\left\|u-\sum_{q} \alpha_{q} v\left(\omega_{q}\right)\right\|^{2}$ attained (note Ω not compact)
- \mathcal{H} is a RKHS (reproducing kernel Hilbert space) associated to $h(x, y)=d^{2}\left(\delta_{x}, \delta_{y}\right)$

Theoretical questions

Theorem (GT 22[6])

Consider Huber-energy kernels $h(x, y)=\left(a^{2}+\|x-y\|^{2}\right)^{r / 2}-a^{r} \quad(a \geq 0$, $r \in] 0,1[)$ or the Gaussian kernel $g(x, y)=1-e^{-\|x-y\|^{2} / 2}$ and μ a measure with finite moments of order r. For fixed $\alpha_{q} \geq 0$ with $\sum \alpha_{q}=1$ the infimum $\inf _{x \in \mathbb{R}^{Q}} d\left(\sum_{q} \alpha_{q} \delta_{x_{q}}, \mu\right)^{2}$ is attained (d is the distance associated to kernel h).
$\mathrm{Rq}:$ two regimes $\lim _{\|x-y\| \rightarrow \infty} d\left(\delta_{x}, \delta_{y}\right)^{2} \rightarrow \infty$ is finite or infinite.

- particular case 1D for the "energy" kernel, uniform weights : solutions are $q+1 / 2 / Q$ quantiles, $q=0, \ldots, Q-1$.

Theoretical questions: positivity of the quantization

Question: suppose $\mu \geq 0$; when optimizing both weights p_{k} and support points x_{k} variables) is the compressed measure positive too ?


```
projection of (0,0) to
(8,0), (9, -5), (10, -5) has optimal
weight negative for red point
```


Proposition (..., GT 2021 in some cases)

Let μ be a probability law on a convex domain with finite first order moment and $K \in \mathbb{N}^{\star}$. If

$$
\sum_{k=1}^{K} p_{k}^{*} \delta_{x_{k}^{*}} \in \operatorname{argmin}_{p_{k}, x_{k}, \sum_{k=1}^{K} p_{k}=1}\left[d\left(\sum_{k=1}^{K} p_{k} \delta_{x_{k}}, \mu\right)^{2}\right]
$$

then $\sum_{k=1}^{K} p_{k}^{*} \delta_{x_{k}^{*}} \geq 0$ i.e., $p_{k}^{*} \geq 0, \forall k$.

Theoretical questions: conditional quantization

- Question: how does the quantization depends on target measure μ ? Suppose μ depends on parameter u e.g. $\mu(u)=\mathcal{N}(u, 1)$ (1D normal of mean u, variance 1). $Q=$ fixed, compression for given $u=\mathrm{ok}$. What about continuity w / r to u ?
- $\mu=\mu(u)$, each measure is 1D valued; to simplify we take them as probability laws.

Lemma (regularity w / r to target)

Suppose $u \mapsto \mu(u)$ is regular enough (...) and the measure $\mu(u)$ is non-atomic $\forall u$; then:

- the minimization problem $\frac{1}{Q} \sum_{q=1}^{Q} \delta_{x_{q}} \mapsto d^{2}\left(\frac{1}{Q} \sum_{q=1}^{Q} \delta_{x_{q}}, \mu(u)\right)$ admits a unique solution $C(u)=\frac{1}{Q} \sum_{q=1}^{K} \delta_{x_{q}}$ (as a probability law);
- the mapping $u \mapsto C(u)$ is regular with respect to u.

Theoretical questions: conditional quantization

- In general : multi-dimensional, conditional quantization $\mu(d y \mid X=x)$ Problems :
- the quantization is not necessarily unique for some u (e.g. symmetries of μ);
- Can prove the existence of a measurable selection (GT 2023).

Figure: Numerical results : MNIST conditional reconstruction: the input

Conditional quantization : numerical results

Figure: Numerical results : MNIST conditional reconstruction; line $1=$ input x, line $2=$ truth, line $3=$ output y

Outline

(1) Motivation

(2) Quantization : tools and algorithms

(3) Theoretical questions

- Existence
- Conditional quantization

4) Application to a transport equation

- Quantization of the transport equation

Application to a transport equation, joint work with L. Laguzet

- Transport equation :

$$
\begin{equation*}
\frac{1}{c} \partial_{t} u(t, x, \omega)+\omega \cdot \nabla u(t, x, \omega)+\sigma_{a}(t, x) u(t, x, \omega)=\sigma_{s}(t, x)[\langle u\rangle(t, x)-u(t, x, \omega)] \tag{5}
\end{equation*}
$$

- $\nabla=\nabla_{x}, t=$ time, $x=$ position, $\omega \in \mathcal{S}^{d}=$ angle of propagation, $\langle u\rangle(t, x)=f_{\mathcal{S}^{d}} u(t, x, \omega) d \omega$; absorption opacity $\sigma_{a}=\sigma_{a}(t, x)$, scattering opacity $\sigma_{s}=\sigma_{s}(t, x)$ known functions, can be taken piecewise constant.
- very computationally intensive, σ spans several orders of magnitude, large total time.
- "diffusion limit" $\left(\sigma_{a}, 1 / \sigma_{s}=O(\epsilon)\right): u=\langle u\rangle-\frac{1}{\sigma_{a}+\sigma_{s}} \omega \cdot \nabla\langle u\rangle+O(\epsilon)$ where $\frac{1}{c} \partial_{t}\langle u\rangle(t, x)=\nabla \cdot\left[\frac{1}{3\left(\sigma_{a}(t, x)+\sigma_{s}(t, x)\right)} \nabla\langle u\rangle(t, x)\right]^{s}-\sigma_{a}(t, x)\langle u\rangle(t, x)$.
- for constant σ_{a}, σ_{s} analytic solutions (in the diffusion limit) exist. What about intermediary regimes ??

Application to a transport equation

- toy problem $\sigma_{a}=0, \sigma_{s}=c s t$ on $\left[x_{\min }, x_{\max }\right], \omega= \pm 1$. Fundamental solution: given by a particular method.

Particle starts at $x_{\text {init }}$, has collisions after $\operatorname{Exp}(\sigma)$ times; can escape through any of the domain's frontiers: time is up or because reaching border of the domain. Escape probability law $\mathcal{E}\left(\sigma, x_{\text {init }} /\left(x_{\max }-x_{\min }\right), t_{\max }\right)$ with support on the border (cross the exit angle parameter).

- Idea: use particular methods, precompute the quantization of the escape distribution on a grid of possible values for $t_{\max }, x_{0}, \sigma_{s}$.

Quantization of the transport equation

Figure: Escape statistics from a time-space domain $\left[x_{\min }, x_{\max }\right] \times\left[0, t_{\max }\right]$. columns 1 to 3 : $\sigma=0.75$ (first line), $\sigma=1$ (second line) and $\sigma=1.25$ (third line); the plots in columns 4 to 6 : $\sigma=7.5$ (first line) $\sigma=10$ (second line) and $\sigma=12.5$ (third line).

Conclusions and future work

Further questions:

- existence results for more general kernels and variable weights
- positivity under more general conditions
- conditional quantization : faster algo

References I

[1] Yvon Maday, Olga Mula, and Gabriel Turinici. "Convergence analysis of the generalized empirical interpolation method". In: SIAM Journal on Numerical Analysis 54.3 (2016), pp. 1713-1731.
[2] Yvon Maday, Anthony T. Patera, and Gabriel Turinici. "A Priori Convergence Theory for Reduced-Basis Approximations of Single-Parameter Elliptic Partial Differential Equations". In: Journal of Scientific Computing 17.1 (Dec. 2002), pp. 437-446. ISSN: 1573-7691. DOI: 10.1023/A:1015145924517. URL: https://doi.org/10.1023/A:1015145924517.
[3] Charles A Micchelli. "Interpolation of scattered data: distance matrices and conditionally positive definite functions". In: Approximation theory and spline functions. Springer, 1984, pp. 143-145.

References II

[4] Isaac J Schoenberg. "Metric spaces and completely monotone functions". In: Annals of Mathematics (1938), pp. 811-841.
[5] Gabriel Turinici. "Cubature on C1 Space". In: Control and Optimization with PDE Constraints. Springer, 2013, pp. 159-172.
[6] Gabriel Turinici. Huber-energy measure quantization. 2022. DOI: 10.48550/ARXIV.2212.08162. URL: https://arxiv.org/abs/2212.08162.
[7] Gabriel Turinici. "Radon-Sobolev Variational Auto-Encoders". In: Neural Networks 141 (2021), pp. 294-305. ISSN: 0893-6080. DOI: 10.1016/j.neunet.2021.04.018.

