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Chapter 1

Motivations and
Examples:
Epidemiology, Finance,
deep learning

The object of this book is on one hand the presentation of
numerical algorithms for finding the solutions to time de-
pending problems and on the other hand the computation of
derivatives in a computational graph ; we will see that the
two share some important features and in particular we will
apply these techniques to the control of evolution equations
and also to techniques in statistical (deep) learning. We begin
with some examples of applications.

1.1 Ordinary Differential Equations (ODE)

An important model in epidemiological modeling is the SIR
model; the initials denote S for the group of ’susceptible’
individuals, I for the group of infected individuals, and R for
the group of those recovered, see Figure 1.1 for a graphical
representation.

After a derivation (which will be presented later in Section

7



8 CHAPTER 1. EXAMPLES

Susceptible Infected Removed
−βSIdt −γIdt

Figure 1.1: Schematic representation of the SIR model in
equation (1.1).
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Figure 1.2: Typical evolution of the system in Equation (1.1);
data taken from [5].

2.9), we obtain the system of equations, called the SIR model


dS
dt = −βSI

N
dI
dt = βSI

N − γI
dR
dt = γI.

(1.1)

We assume S(0) = S0 6= 0, I(0) = I0 > 0, R(0) = R0 ≥ 0,
S0 + I0 + R0 = N , N is the total population. Here, β, γ
are parameters of the model. A typical evolution is given in
Figure 1.2.

In reality, the model needs to be adapted, as real data
is not always compatible with simple models, see Figure 1.3.
Therefore, we move beyond the domain of models with an-
alytical solutions and must find accurate numerical approxi-
mations of their solutions.
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dS/dt = −rS(t)I(t)− rpS(t)Ip(t)

dE/dt = rS(t)I(t)− bE(t)

dI/dt = bE(t)− aI(t)

dR/dt = aI(t)

dIp/dt = rpS(t)Ip(t)− apIp(t)
dRp/dt = apIp(t).

Figure 1.3: Actual evolution of the number of infected indi-
viduals; image taken from [5]. To accurately reproduce real
data, it is necessary to use a model like the one on the right.

1.2 Stochastic Differential Equations (SDE)

In financial applications (calculations for derivative products
in different scenarios) or in physics (path integrals, etc.),
there is a need to handle quantities that evolve over time
and also contain an element of uncertainty. For instance, the
yield

St+∆t−St
St

of a financial asset contains a predictable part
and another random part, which can be modeled, like in the
Black-Scholes model, as a normal variable N (µ∆t, σ2∆t)1.
The following stochastic differential equation (SDE) is ob-
tained (see [7] for details):

dSt = µStdt+ σStdWt. (1.2)

An illustration of solution scenarios for (1.2) is provided in
Figure 1.4.

Reminder: derivative products are financial instruments
whose value depends (according to a pre-established contract)
on an underlying asset. Example: a European call option on
St with a final value of (ST −K)+. However, the calculation
of the value before expiration is unknown. Models need to
be imposed, and quantities such as:

EQ[e−r(T−t)(ST −K)+ |(Su)u≤t ], (1.3)

1We do not discuss the justification of the validity of this model here;
for real-life applications, this justification must be carefully validated!!
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Figure 1.4: Solution scenarios for (1.2).

need to be calculated. As a reminder, St follows an SDE; the
goal is to calculate solutions, study the accuracy of numeri-
cal calculations, determine if precise scenario calculations are
desired (strong convergence) or only averages (weak conver-
gence), etc...

1.3 Computating the derivativ in a com-
putational graph and control of evo-
lution equations

The goal is to influence the evolution of a system by acting
on various parameters called ”controls”. The same approach
helps us study the sensitivity of a result (obtained from solv-
ing an evolution equation) with respect to input parameters;
an example can be constructed from section 1.1 if we want
to khow how S(∞) of (1.1) depends on β.

In general, whenever a result is obtained using sequential
calculations on a computational graph, the derivative of the
result with respect to the inputs can be calculated. This is
called backpropagation; in control theory, this gives rise to
”adjoint states”.

Example (adapted from [4], also see [2, chap 6.5]): f =
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5 · (x + y · z). The graph has inputs x, y, z, and output
f = f(x, y, z). To calculate ∂xf , ∂yf , ∂zf , write it as a
computational graph (direct or ”forward” calculation):

u = y × z
v = x+ u
f = 5× v
Let x = 1, y = 2, z = 3; here are the relations obtained by

elementary derivation of each calculation (adjoint or ”back-
ward” calculation):

∂vf = 5
∂xf = ∂vf × ∂xv = ∂vf = 5
∂uf = ∂vf × ∂uv = ∂vf = 5
∂yf = ∂uf × ∂yu = 5z = 15
∂zf = ∂uf × ∂zu = 5y = 10.
We will study the relationship between the derivative and

the computational graph and observe the emergence of an
auxiliary variable called the adjoint state. It is crucial for
the formalization of the calculation and allows the treatment
of complex situations (cf. Figure 1.5 for the ”Inception” net-
work [6]).

in
p
u
t

C
o
n
v

7
x
7
+
2
(S
)

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

L
o
ca
lR
e
sp
N
o
rm

C
o
n
v

1
x
1
+
1
(V
)

C
o
n
v

3
x
3
+
1
(S
)

L
o
ca
lR
e
sp
N
o
rm

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

A
v
e
ra
g
e
P
o
o
l

5
x
5
+
3
(V
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

A
v
e
ra
g
e
P
o
o
l

5
x
5
+
3
(V
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

A
v
e
ra
g
e
P
o
o
l

7
x
7
+
1
(V
)

F
C

C
o
n
v

1
x
1
+
1
(S
)

F
C

F
C

S
o
ft
m
a
x
A
ct
iv
a
ti
o
n

so
ft
m
a
x
0

C
o
n
v

1
x
1
+
1
(S
)

F
C

F
C

S
o
ft
m
a
x
A
ct
iv
a
ti
o
n

so
ft
m
a
x
1

S
o
ft
m
a
x
A
ct
iv
a
ti
o
n

so
ft
m
a
x
2

Figure 1.5: ”Inception” network architecture [6]. Each cell
represents a multi-variable calculation such as matrix-vector
multiplication followed by a non-linear operation like taking
the positive part on each component.
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Chapter 2

Ordinary Differential
Equations (ODE)

Let I be an open interval included in R+. Consider the fol-
lowing ordinary differential equation (ODE):

dX

dt
= f(t,X(t)), X(t0) = X0, (2.1)

with the integral form

X(t) = X(t0) +

t∫
t0

f(s,X(s))ds. (2.2)

2.1 Existence and Uniqueness of the So-
lution

To show the existence and uniqueness of the solution to the
previous ODE, we use the following two theorems:

Theorem 2.1 (Local Lipschitz variant of Cauchy-Lipschitz).
Let f : I × R→ R be a locally Lipschitz continuous function
at X0 ∈ R, t0 ∈ I. In other words, there exist two balls
Bx(X0, Rx), Bt(t0, Rt) and a constant L > 0 such that ∀t ∈

13



14 CHAPTER 2. ODE

Bt(t0, Rt), ∀X1, X2 ∈ Bx(X0, Rx):

|f(t,X1)− f(t,X2)| ≤ L|X1 −X2|.

Then there exists ε > 0 such that the Cauchy problem (2.1)
has a unique local solution: X(t) : (t0 − ε, t0 + ε) ⊂ I → R.
Moreover, X(·) is a C1 function.

Theorem 2.2 (Global Lipschitz variant of Cauchy-Lipschitz).
Under the same assumptions as in Theorem (2.1), if L is the
same for all Rx (radius of the ball) and initial condition X0,
then a global solution exists and is unique.

Remark 2.3. Global existence also holds if we can find a
continuous function α : R→ R+ such that

|f(t,X1)− f(t,X2)| ≤ α(t)|X1 −X2|.

This allows L to depend on time.

Example 2.4 (linear function). Let f(t,X) = rX with r ∈ R
constant. Then |f(t,X1) − f(t,X2)| = |r| · |X1 −X2|, so we
obtain global existence with L = |r|.

Example 2.5 (non-linear function that blows up). Let f(t,X) =
5

X−3 . An immediate calculation gives |f(t,X1)− f(t,X2)| =
5

|(X1−3)(X2−3)| · |X1−X2|, so we obtain local existence for L =

supX1,X2∈V
5

|(X1−3)(X2−3)| in an open neighbourhood V of any

point X0 6= 3 (such that 3 /∈ V). However, as 5
|(X1−3)(X2−3)|

is not bounded around X0 = 3, the global existence theorem
is not applicable at X0 = 3.

2.2 Numerical Methods

2.2.1 Important notations

If the solution to the Cauchy problem exists, it is unique
(cf. Theorem 2.1). To numerically find the solution, it is
approximated using different methods. The approximation
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is done, for example, on [0, T ] with N points. We introduce
some important notations used throughout this chapter :

1. the equation to solve is (2.1);

2. h = T/N is called the ”time step”; we denote tn = n ·h,
∀n ≤ N ;

3. Xn = X(tn) is the exact solution; in general we do not
have a analytic formula so Xn will remain unknown;

4. Un will be an approximation of Xn; this is the main
object that we search

5. fn = f(tn, Un).

2.2.2 One step methods

So the main question is how to calculate the Un? For exam-
ple, starting from the following formula:

X(tn+1) = X(tn) +

tn+1∫
tn

f(s,X(s))ds. (2.3)

one could imagine a recurrence that is called a one-step
method given by :

Un+1 = Un + hφ(tn, Un, fn, h). (2.4)

Each function φ gives another numerical method. Note that
φ can also depend on Un+1 or fn+1; in this case, we speak
of implicit methods. A ”numerical scheme” is a procedure to
solve the ODE. It is formulated independent of the function
f that actually defines the ODE. We do not look for numerical
schemes that only work for particular ODEs but for schemes
that work for a large class of functions f . So in general the
regularity of f is not an important issue (see nevertheless the
”stiff” numerical schemes latter) so we can suppose f at least
C1.
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2.2.3 Definition of 4 classic numerical schemes

We describe below four important numerical schemes. To
illustrate their use we take two particular cases for function
f namely f1(t,X) = rX and f2(t,X) = rX2. We recall that
for f1, the solution X(t) of Ẋ(t) = f1(t,X(t)) is X(t) =
ertX0, while for f2, the solution Y (t) of Ẏ (t) = f2(t, Y (t)) is
Y (t) = Y0

1−rtY0
.

� Explicit Euler (denoted EE from now on):{
Un+1 = Un + hf(tn, Un) = Un + hfn
U(0) = X(0)

(2.5)

Here, φ = fn. Examples: for f1 : Un+1 = Un + hrUn =
(1 + rh)Un; for f2: Un+1 = Un +hrU2

n = (1 + rhUn)Un.

� Implicit Euler (denoted IE from now on):{
Un+1 = Un + hfn+1

U(0) = X(0)
(2.6)

Here, φ = fn+1. Examples: for f1 : Un+1 = Un +
hrUn+1 so Un+1 = Un

1−rh ; for f2: Un+1 = Un + hrU2
n+1

so Un+1 is a solution of rhU2
n+1 − Un+1 + Un = 0.

When f is Lipschitz, for sufficiently small h, the value
Un+1, a solution of the implicit IE scheme definition
equation, is unique, see exercise 2.5 page 39.

� Crank-Nicolson (denoted CN from now on, im-
plicit): {

Un+1 = Un + h
[fn + fn+1

2

]
U(0) = X(0)

(2.7)

Examples: for f1 : Un+1 = Un + hrUn+Un+1

2 so Un+1 =
1+ rh

2

1− rh
2

Un; for f2: Un+1 = Un + hr
U2
n+U2

n+1

2 so Un+1 is a

solution of rh
2 U

2
n+1 − Un+1 + (1 + rh

2 Un)Un = 0.
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� Heun (denoted H from now on, explicit):{
Un+1 = Un +

h

2

[
fn + f(tn+1, Un + hfn)

]
U(0) = X(0)

(2.8)
Examples: for f1 : Un+1 = Un+ h

2 [rUn+r(Un+hrUn)];

for f2: Un+1 = Un + h
2 [rU2

n + r(Un + hrU2
n)2].

Intuition 2.6. The relation (2.3) indicates that we
need to find a way to approximately calculate the inte-
gral of f(t,X(t)) between tn and tn+1 = tn + h. The
EE scheme takes an approximation using the method
of rectangles by using the value at tn, the IE scheme
uses the value at tn + h, and the CN scheme takes the
average of the two, i.e., it uses the trapezoidal rule.
As for the Heun scheme, it uses an approximation of
Xn+1 that it reintroduces into a CN-type scheme but
with the idea of keeping it explicit.

2.3 Error, Consistency, and Order

2.3.1 Error

When introducing the exact solution into the formula (2.4)
for one-step methods, we obtain ”truncation errors” τn+1(h):

X(tn+1) = X(tn) + hφ(tn, Xn, f(tn, Xn), h)︸ ︷︷ ︸
true for the numerical scheme, i.e., Un instead of Xn, etc.

+hτn+1(h).

or

τn+1(h) :=
X(tn+1)−X(tn)− hφ(tn, Xn, f(tn, Xn), h)

h

=
X(tn+1)−X(tn)

h
− φ(tn, Xn, f, h). (2.9)

Definition 2.7. The remainder that appears when the true
solution is placed into the relation defining the numerical



18 CHAPTER 2. ODE

scheme (similar in form to the initial equation) is called the
truncation error. For one-step methods (2.4), it is τn+1(h)
defined in (2.9), which is called the local truncation error at
step n+ 1. The global truncation error is defined by the rela-
tion: τ(h) = max

n=1,...,N
|τn(h)|.

Remark 2.8. The truncation error here is the same as the
error (divided by h) between Xn+1 and the U∗n+1 obtained
starting from Un = Xn.

Example 2.9. Explicit Euler: Using the Taylor series for-
mula to the 2nd order:

X(t+ h) = X(t) + hẊ(t) +
1

2
h2Ẍ(ξ), ξ ∈ [t, t+ h]

For (t = tn and tn + h = tn+1), we get: τn+1(h) =
1

2
hẌ(ξn).

Implicit Euler: : similar computations but also check the
technique 2.14 and the exercise 2.5 page 39.

2.3.2 Consistency and Order

Definition 2.10. A scheme is said to be consistent if:

lim
h→0

τ(h) = 0, (2.10)

i.e., for small h, the exact solution satisfies the scheme.
A scheme is of order ”p” if: τ(h) = O(hp) for h→ 0.

2.4 Stability and Convergence

2.4.1 Zero-Stability

To study stability with respect to perturbations, we check if
Zhn defined by:

Z
(h)
n+1 = Z(h)

n + h[φ(tn, Z
(h)
n , f(tn, Z

(h)
n ), h) + δn+1]

Z
(h)
0 = δ0 +X0, (2.11)

is close to Un+1.
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To know more 2.11. Numerical inaccuracies do not
appear during an addition but mostly in the computa-
tion, often complex, of the function φ; that’s why the
perturbations δn are placed where indicated in the for-
mula (2.11). For example, if f(t,X) = X2−1 needs to

be calculated at t = 0, X =
√

2, the value
√

2
2 − 1 = 1

is often affected by errors. Python calculation exam-
ple:

In [2]: numpy.sqrt(2)**2 -1

Out[2]: 1.0000000000000004

Definition 2.12. The scheme given by φ is called zero-stable
if there exists h0 and a constant C (independent of ε) such
that if h ≤ h0 and |δn| < ε (∀n): then

|Z(h)
n+1 − Un+1| ≤ Cε, ∀n ≥ 0. (2.12)

Theorem 2.13. Assuming f and φ are Lipschitz with respect
to their second variable, meaning that there exist Λ > 0, h0 >
0 such that ∀h < h0 such that :

|φ(t,X, f(t,X), h)− φ(t, Y, f(t, Y ), h)| < Λ|X − Y |,∀X,Y.

Then the numerical scheme given by φ is zero-stable.

Proof. Let’s denote: Wn = Z
(h)
n − Un. Then

Wn+1 = Z(h)
n −Un+h[φ(tn, Z

(h)
n , f, h)−φ(tn, Un, f, h)]+hδn+1

so |Wn+1| ≤ |Wn| + hΛ|Wn| + h|δn+1| thus by summing
these inequalities and simplifying terms:

|Wn+1| ≤ |W0|+ hΛ

n∑
s=0

|Ws|+
n+1∑
s=1

h|δs|.

This allows us to conclude using the discrete Gronwall’s
lemma (see exercise 2.3 page 38):

|Wn+1| ≤ |W0|+ hΛ exp(hΛn) ≤ (1 + T )ε exp(ΛT ).
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Important technique 2.14. Question: which meth-
ods among EE, IE, CN, H satisfy the assumptions of
theorem 2.13 ?
• EE: φ = fn, Lipschitz when f is.
• H: similar techniques
• For general implicit methods, see exercise 2.5 page
39.
• Intuition for IE: by definition, φ has the prop-
erty: φ(tn, Un, fn, h) = f(tn+1, Un+1) (assuming the
existence of a unique solution). Then for two ini-
tial points Un, Vn, we need to bound f(tn+1, Un+1) −
f(tn+1, Vn+1): |f(tn+1, Un+1) − f(tn+1, Vn+1)| ≤
L|Un+1 − Vn+1| and |Un+1 − Vn+1| ≤ |Un − Vn| +
h|f(tn+1, Un+1) − f(tn+1, Vn+1)| ≤ |Un − Vn| +
hL|Un+1 − Vn+1| thus |Un+1 − Vn+1| ≤ |Un − Vn|/(1−
hL)...
• CN: similar techniques

2.4.2 Convergence

Definition 2.15. A scheme is said to be convergent of order
p if, with the previous notations, |Un − Xn| = O(hp). A
scheme convergent of order 1 is simply called ”convergent.”

Theorem 2.16. Under the same assumptions as in Theo-
rem 2.13, we have:

|Un −Xn| ≤ (|U0 −X0|+ nhτ(h)) exp(λnh).

In particular, if for p ≥ 1: |U0 − X0| = O(hp) and τ(h) =
O(hp), then |Un − Xn| = O(hp) (the scheme converges of
order p).

Proof. We follow the same steps as in the proof of Theo-
rem 2.13, with δj = τj(h) (using the discrete Gronwall’s
lemma). Here, the exact solution Xn plays the role of the

perturbation Z
(h)
n .
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To know more 2.17. The previous theorem can be
rewritten as stating that consistency and stability
imply convergence. This is a principle often en-
countered.

Corrolary 2.18. The schemes EE and IE converge of order
1. The schemes CN and H converge of order 2.

Proof. I will provide detailed reasoning only for the Crank-
Nicholson scheme:

Xn+1 = Xn +
h

2

[
f(tn, Xn) + f(tn+1, Xn+1)

]
+ hτn+1(h)

(2.13)
so (for now, treating it as if it were explicit, see exercise
2.5 for details):

Xn+1 = Xn +
h

2

[
X ′n +X ′n+1

]
+ hτn+1(h). (2.14)

Also, the Taylor series at order 2 for X ′ and at order 3 for
X provide:

X ′n+1 = X ′n + hX ′′n +
h2

2
X(3)
n (η) (2.15)

Xn+1 = Xn + hX ′n +
h2

2
X ′′n +

h3

6
X(3)
n (ξ)(2.16)

Replacing (2.15) and (2.16) into (2.14) gives:

hτn+1(h) =
h3

6
X(3)
n (ξ)− h3

4
X(3)
n (η) (2.17)

which leads to τn+1(h) = O(h2) (after some calculations
to transfer the implicit version into an explicit one).

To know more 2.19. So, we have several methods,
each with its convergence order. Which one to choose
then? A naive answer would be to pick the scheme with



22 CHAPTER 2. ODE

the highest order. However, as we saw with CN, for the
order to be effective, we need to use higher derivatives
of f (meaning f needs to be smooth), and on the other
hand, the higher the order of the scheme, the more
intermediate calculations of the f function are required
(EE/IE have only one f calculation, while CN uses
two), which can be costly. In practice, one rarely goes
beyond order 4 or 5 (and sometimes sticks to order 1).

2.4.3 Absolute Stability

Here, stability is considered from the perspective of the solu-
tion over a long time T = Nh (as T → ∞), but for a fixed
step size h (so N → ∞). For λ ∈ C, t ≥ 0, we consider the
test problem:

Ẏ (t) = λY (t) (2.18)

Y (0) = 1 (2.19)

with the solution Y (t) = eλt. For Re(λ) < 0, we obtain
lim

t→+∞
Y (t) = 0. So, any local perturbation in time is ”erased”

in the long run. This is a very desirable property for numer-
ical schemes that have to combat rounding errors, etc. We
want to preserve this property.

Definition 2.20. A scheme is said to be absolutely stable if,
for f(t, x) = λx and ∀h, λ, Un → 0. Otherwise, its region of
absolute stability is:

{hλ ∈ C|Un → 0}.

To know more 2.21. Choosing f to be linear is not
so surprising because at first order f(t, x) ' f(t,X0)+
∂f
∂x (t,X0)(x −X0) so, apart from a constant, we have
a linear function.
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Re(z = λh)

Im(z = λh)

−1
Re(z = λh)

Im(z = λh)

1

Re(z = λh)

Im(z = λh)

Figure 2.1: The stability of Explicit Euler (top left), Implicit
Euler (top right), and Crank-Nicholson (bottom): in green
stability region, in red instability region.

Example 2.22 (Explicit Euler). Un = (1 + hλ)nU0. We
define the stability region by imposing the stability condition:
|1 + hλ| < 1. This corresponds to the interior of B((-1,0),1),
see figure (2.1) for an illustration.

Example 2.23 (Implicit Euler). Un+1 =
Un

1− hλ =
U0

(1− hλ)n+1
.

To find the stability region, limit the time step h by imposing
the stability condition:

|1− hλ| > 1.

So, here it is the exterior of B((1,0),1), see figure 2.1 for an
illustration.

Example 2.24 (Crank-Nicholson).

Un+1 =

1 +
hλ

2

1− hλ

2


n+1

U0. (2.20)
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The stability region is defined by imposing the stability con-
dition:z = hλ ∈ C :

∣∣∣∣∣∣∣
1 +

hλ

2

1− hλ

2

∣∣∣∣∣∣∣ < 1

 = {z ∈ C : Re(z) < 0} ,

see figure 2.1 for an illustration.

Example 2.25 (Heun). The stability region is (after calcu-

lations) {z ∈ C : |1 + z + z2

2 | < 1}.

2.5 Higher-Order Methods: Runge-Kutta

These are methods that evaluate the function at intermediate
steps:

Un+1 = Un + hF (tn, Un;h, f). (2.21)

with the function F of the scheme defined by

F (tn, Un;h, f) =
s∑
i=1

biKi (2.22)

Ki = f(tn + cih, Un + h
s∑
j=1

aijKj), i = 1, 2, ..., s, ci ≥ 0. (2.23)

A method of this kind is called a Runge-Kutta (R-K) method.
For a simpler presentation, we introduce the Butcher tableau

of the scheme
c A

bT
or

c1 a11 a12 ... a1s

c2 a21 a22 ... a2s

... ... ... ... ...
cs as1 as2 ... ass

b1 b2 ... bs

(2.24)

We will always assume
∑s

j=1 aij = ci.
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Definition 2.26. If A is strictly lower triangular, then the
method is called explicit; if A is only lower triangular, then
the method is semi-explicit. In all other cases, it is an implicit
method.

Intuition 2.27. • When A is lower triangular with
zero diagonal, the calculation of K1 is done explicitly.
Then this allows the explicit calculation of K2 and so
on. The scheme is thus explicit.
• When A is triangular with a non-zero diagonal, the
method requires the sequential solution of s equations
(not necessarily linear) to find the Ki, i ≤ s.
•When A is full, the method requires the simultaneous
solution of s equations (a system of equations) to find
the Ki, i ≤ s.

Remark 2.28. For implicit methods, one would also need
to show the existence of a solution for the time steps.
Assuming f is Lipschitz, this follows from Picard’s fixed-
point theorem by taking a recurrence as in Exercise 2.5.

Example 2.29 (4th-order R-K method). Consider the scheme:

Un+1 = Un +
h

6
(K1 + 2K2 + 2K3 +K4) (2.25)

K1 = fn = f(tn, Un), (2.26)

K2 = f(tn +
h

2
, Un +

h

2
K1), (2.27)

K3 = f(tn +
h

2
, Un +

h

2
K2), (2.28)

K4 = f(tn+1, Un + hK3). (2.29)

The associated Butcher tableau is

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

. (2.30)

This scheme is of order 4.
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2.5.1 Construction of Second-Order Methods (Ex-
plicit)

Proposition 2.30. Explicit methods with s = 2 that are
second-order (in terms of convergence) satisfy b1 + b2 = 1
and b2c2 = 1/2.

Proof. Take s = 2. Since the method is explicit, the ma-
trix A in the Butcher tableau is strictly lower triangular,

i.e., A =

(
0 0
a21 0

)
. Let a := a21, then c1 = 0 + 0 = 0 and

c2 = a+ 0 = a.
The corresponding Butcher tableau is:

0 0 0
a a 0

b1 b2

Then Un+1 = Un + hF with: F = b1K1 + b2K2, K1 =
f(tn, Un) = fn, K2 = f(tn + ah, Un + haK1) = f(tn +
ah, Un + hafn).
So, Un+1 = Un +h(b1fn + b2f(tn + ah, Un + ahfn)). For it
to be of order 2, the truncation error τn+1(h) must satisfy
τn+1(h) = O(h2).

Recalling that τn+1(h) =
Xn+1−U∗n+1

h , where U∗n+1 is the
scheme starting from the exact solution X(tn) = Xn,
here, U∗n+1 = Xn + h[b1f(tn, Xn) + b2f(tn + ah,Xn +
ahf(tn, Xn))].
We will need the 2D Taylor formula: let G be a C2 func-
tion, then

G(α+ h1, β + h2) = G(α, β) +
∂G

∂α
(α, β)︸ ︷︷ ︸

notation: Gα

h1 +
∂G

∂β︸︷︷︸
Gβ

(α, β)h2

+O

((√
h2

1 + h2
2

)2
)
. (2.31)

So, by the 2D Taylor formula,

f(tn + ah,Xn + ahf(tn, Xn))
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= f(tn, Xn)+ah[ft(tn, Xn)+fX(tn, Xn)f(tn, Xn)]+O(h2)

= f(tn, Xn)+ah[ft(tn, Xn)+fX(tn, Xn)f(tn, Xn)]+O(h2)

On the other hand, as X ′(t) = f(t,X(t)), we also have

X ′′(t) =
d

dt
X ′(t) =

d

dt
f(t,X(t))

= ft(t,X(t)) + fX(t,X(t))f(t,X(t)).

So,

f(tn + ah,Xn + ahf(tn, Xn)) = f(tn, Xn) + ahX ′′(tn) +O(h2)

= X ′(tn) + ahX ′′(tn) +O(h2) (2.32)

The truncation error thus satisfies:

τn+1(h) =
Xn+1 − U∗n+1

h

=

Taylor-Lagrange︷ ︸︸ ︷
X(tn+1)−X(tn)−hb1X′(tn)− hb2(X′(tn) + ahX′′(tn)) +O(h3)

h

=
hX′(tn) + h2

2
X′′(tn) +O(h3)− hb1X′(tn)− hb2(X′(tn) + ahX′′(tn)) +O(h3)

h

=X′(tn)(1− b1 − b2) + h

(
X′′(tn)

2
− ab2X′′(tn)

)
+O(h2)

=X′(tn)(1− b1 − b2) + hX′′(tn)

(
1

2
− ab2

)
+O(h2).

(2.33)

For the method to be of order 2, it is necessary and suf-
ficient that b1 + b2 = 1 and ab2 = 1/2, which gives the
conclusion.

Example 2.31 (Heun as a Second-Order RK Method).
In the case where b1 = b2, then b1 = b2 = 1

2 and a = 1:

0 0 0
1 1 0

1
2

1
2

So: K1 = f(tn, Un) = fn and K2 = f(tn+h, Un+hf(tn, Un)) =
f(tn+1, Un+hfn), thus Un+1 = Un+ h

2 [fn+f(tn+1, Un+hfn)],
giving us the Heun method.
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2.5.2 Consistency

Proposition 2.32. Let f be a Lipschitz function. Then
the Runge-Kutta method (explicit) is consistent if and only
if
∑s

i=1 bi = 1.

Proof. by Taylor expansions.

2.6 Advanced considerations: adaptive
time steps for Runge-Kutta

Motivation: Sometimes the solution is almost constant, but
other times it is highly variable. We would like to take advan-
tage of the ”calm” regions and use a large step h, which will
be adjusted later in highly oscillatory regions. For this, we
need to employ adaptive step (i.e., variable and adjusted)
methods. To determine how to choose this step, we need
error estimations.

How to estimate the error in practice? The easiest way
would be to double the step. One idea would be to perform
a calculation with a step 2h and compare it with two consec-
utive calculations with step h. Let Y2h be the value obtained
after a single step of size 2h and Yh,h after two steps of size
h. Both are assumed to start from Xn or close to it within a
tolerance. We know that, if the method is of order p > 1:

X(tn + 2h) = Y2h + (2h)p+1ψn +O(hp+2)

X(tn + 2h) = Yh,h + 2hp+1ψn +O(hp+2).

The quantity ∆ = Y2h − Yh,h = (2p+1 − 2)hp+1ψn helps us
adjust the h.

Remark 2.33. The formulas provide an approximation
of order p + 1 for X(tn + 2h). However, the error would
then be unknown.

Although in principle the method above would be inter-
esting, it uses too many evaluations of f . We will refine it by
constructing two methods that use the same evaluations (thus
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same Ki) but whose linear combinations involving bi yield dif-
ferent orders. We then talk about embedded schemes of
Runge-Kutta-Fehlberg (R-K-F). Notation:

c A

bT

b̂T

ET

where c, A, b give a scheme of order p while c, A, b̂T give a
scheme of order p + 1. The difference E = b − b̂ serves to
estimate the truncation error ∆ = h

∑s
i=1EiKi.

The most popular are the R-K-F schemes of orders 4-5 or
5-6 or even 2-3. In practice, the algorithm is as follows:

- At the beginning, we specify a tolerance ∆0.
- If ∆ > ∆0 then we redo the calculation with the step

h̃ = h p+1

√
∆0
∆ .

- If ∆ ≤ ∆0, the step h is kept constant.

2.7 Advanced considerations: systems of
ODEs

Let I ⊂ R+ be an open interval and F : R× Rn → Rn. The
problem is to solve the following Cauchy problem:{

Y ′(t) = F (t, Y (t))
Y (t = 0) = Y0 ∈ Rn (2.34)

Example 2.34. X ′′ = f(X) is not an ODE, but it can be
written as a system, by setting: Y1 = X,Y2 = X ′, and we
get: {

Y ′1 = Y2

Y ′2 = f(Y1)

Theorem 2.35 (existence and uniqueness). Let F :]−∞,∞[×Rn →
Rn be a continuous function and Lipschitz with respect to the
second variable

‖F (t, y)− F (t, ỹ)‖ ≤ L‖y − ỹ‖ ∀t ∈ R, ∀y ∈ Rn,
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with an L not depending on y ∈ Rn. Then the Cauchy prob-
lem (2.34) has a unique global solution (i.e., defined for all
t ≥ 0). If F is Lipschitz only around (t0 = 0, Y0), then the
solution is only locally defined.

Particular case: F (t, y) = Ay with A being an n×n matrix.
The problem {

Y ′ = AY
Y (0) = Y0

has the (unique) solution Y (t) = eAtY0 where we recall the

definition of eAt =
∑∞

n=0
(At)k

k! .
If A is diagonalizable, i.e.:

1) ∃Q invertible such that A = QDQ−1, D diagonal

2) or equivalently ∃Vi, λi, such that AVi = λiVi, ‖Vi‖ = 1,
and {Vi; i = 1, . . . , n} is a basis of Rn

then, Y (t) =
∑n

i=1 e
λitVi < y0, Vi >.

2.7.1 System Stability:

By setting Z = Q−1Y , we obtain:

Y ′ = AY =⇒ Y ′ = QDQ−1Y =⇒ Q−1Y ′ = DQ−1Y (2.35)

And, since Z ′ = (Q)−1Y ′, we derive the following differential
equation: Z ′ = DZ, and the problem:

Z ′1 = λ1Z1
...

Z ′n = λnZn

The solutions to this problem are given by: Zi(t) = eλitZi(0),
and the stability of the system is equivalent to the stability
of all the ODEs in the problem.

Example 2.36 (Explicit Euler). Un+1 = Un + hf(tn, Un).
Let f(y) = Dy.

Applying Explicit Euler to this example, we have: Un+1 =
Un +hDUn = (1 +hD)Un. Therefore, the scheme is stable if
|1 + hλi| < 1 for all i = 1, . . . , n.
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Example 2.37 (Implicit Euler). Un+1 = Un+hf(tn+1, Un+1);
for the previous example, we have: Un+1 = Un +hDUn+1, so
Un+1 = (1− hD)−1Un. The scheme is stable if |1− hλi| > 1
for all i = 1, . . . , n.

To know more 2.38 (Implementation). We al-
ways consider the case f(t, y) = Ay.
- For explicit schemes Un+1 = Un + hAUn, so it’s a
direct calculation.
- For implicit schemes Un+1 = Un + hAUn+1, Un+1 =
(I − hA)−1Un; a linear system must be solved. For
more complicated functions f , methods like Newton’s
or Picard’s approximation are needed (cf. exercise 2.5)
etc. ...

2.7.2 Stiff Systems

We have seen that implicit schemes are sometimes challenging
to implement; why use them then? Consider the following
differential system:

u′ = 998u+ 1998v with u(0) = 1

v′ = −999u− 1999v with v(0) = 0

We make the change of variables u = 2y − z and v =
−y + z, which gives us:{

y′ = −y
z′ = −1000z

⇒
{
y(t) = e−tyo
z(t) = e−1000tz0

(so λ1 = −1, λ2 = −1000). Returning to our initial variables,
we obtain the desired solution:

u = 2e−t − e−1000t,

v = e−t + e−1000t.

For the stability of Explicit Euler, |1 + hλ1| < 1 and
|1 + hλ2| < 1 are required, so h ≤ 2

1000 .
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For Implicit Euler stability, |1−hλi| > 1, which is always
satisfied (∀h > 0). Assuming we are only interested in the
e−t part of the solution (treating e−1000t as a perturbation,
which it is), the precision of both schemes could be good for
sufficiently large steps h; however, for Explicit Euler, we must
use a small h as stability is not guaranteed otherwise. Con-
clusion: using implicit schemes allows solving with a larger
h, hence more quickly.

2.8 Multi-step Methods

The idea behind these schemes is to use previous steps (val-
ues) that are available.

Vocabulary: These schemes are also known as predictor-
corrector methods.

Definition 2.39. The linear multi-step scheme of order s
(with the notation as = 1) is given by the recurrence:

s∑
k=0

akyn+k = h
s∑

k=0

bkf(tn+k, yn+k). (2.36)

Here yn+s is unknown, and the previous values yn+s−1, . . . , yn
are known.

We notice that if bs 6= 0, then the method is implicit;
otherwise, it is explicit. Let’s consider some examples.

Example 2.40. Explicit Euler For s = 1, a0 = −1, a1 =
b0 = 1, b1 = 0,

1 · yn+1 + (−1) · yn = 1 · hf(tn, yn) + 0 · hf(tn+1, yn+1).

Example 2.41. Adams-Bashforth Two-Step (explicit)
Taking s = 2, a0 = 0, a1 = −1, a2 = 1, b0 = −1

2 , b1 = 3
2 , b2 =

0, the scheme is defined by the relation:

yn+2 = yn+1 +
3

2
hf(tn+1, yn+1)− 1

2
hf(tn, yn). (2.37)
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Example 2.42. BDF Two-Step (implicit) Here s = 2, a0 =
1
3 , a1 = −4

3 , a2 = 1, b0 = 0, b1 = 0, b2 = 2
3 , and thus:

yn+2 −
4

3
yn+1 +

1

3
yn =

2

3
hf(tn+2, yn+2). (2.38)

Definition 2.43. The local truncation error is τn+s(h) de-
fined by:

τn+s(h) :=

∑s
k=0 akX (tn+k)− h

∑s
k=0 bkf (tn+k, Xn+k)

h
.

(2.39)

Reminder: The global truncation error is τ(h) = max
n
|τn+s(h)|;

the multi-step scheme (ak, bk)
s
k=0 is consistent if limh→0 τ(h) =

0.

Theorem 2.44. The multi-step scheme (ak, bk)
s
k=0 is con-

sistent if and only if:

s∑
k=0

ak = 0,
s∑

k=0

bk =
s∑

k=0

kak. (2.40)

or, equivalently:

s−1∑
k=0

ak = −1,

s∑
k=0

bk = s+

s−1∑
k=0

kak. (2.41)

Example 2.45 (EE as a Consistent Multi-step Scheme).
Taking the previous example where a0 = −1, a1 = 1, b0 =
1, b1 = 0, the conditions for the theorem are satisfied. Thus,
the EE scheme is consistent.

Example 2.46 (Adam-Bashforth as a Consistent Mul-
ti-step Scheme). The Adam-Bashforth scheme satisfies

2∑
k=0

ak = 0 and

2∑
k=0

akk =

2∑
k=0

bk = 1. (2.42)

Therefore, this scheme is consistent.
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Example 2.47 (BDF as a Consistent Multi-step Scheme).

The BDF scheme (s = 2) satisfies
2∑

k=0

ak = 0 and
2∑

k=0

akk =

2∑
k=0

bk = 2/3. Hence, this scheme is also consistent.

2.9 Application in Epidemiology: SIR
Model

We quickly present the modeling leading to the SIR system.
We refer to [5, 3] and similar references for a more detailed
presentation (just to change, we took a reference prior to the
COVID-19 pandemic...). The variables are:

- S = the number of people susceptible to infection (the
population not yet affected by the epidemic).

- I = the number of infected people.

- R = the number of people who have had the disease,
died, or can no longer transmit it (having acquired immunity
or being in quarantine, etc.).

Let N = S(0) + I(0) + R(0) be the initial population
(which will be conserved).

Model assumptions:

1. The number of infections (transition from S to I) is
proportional to the number of individuals in S, the in-
fection rate I(t)/N , and the duration ∆t. We denote β
as the proportionality factor. Since the number of new
infections between t and t+ ∆t is S(t)− S(t+ ∆t), we
obtain S(t)− S(t+ ∆t) ' βSI∆t/N

2. The transition I → R is proportional to the number of
individuals in I; it depends on the recovery rate γ (here
1/γ is the average number of days before leaving the I
compartment).

By taking the limit ∆t → 0, we obtain the system of
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equations, called the SIR model:

dS
dt = −βSI/N (2.43)
dI
dt = βSI/N − γI (2.44)
dR
dt = γI (2.45)

We assume S(0) = S0 6= 0, I(0) = I0 > 0, R(0) = R0 = 0.

Remark 2.48. Since d
dt(S+I+R) = 0, then S(t)+I(t)+

R(t) = N = cst.

A first question to ask is when I will be increasing or
decreasing. Fortunately, this can be read directly from the
equation for I: I ′ = I(βS/N − γ), so it will increase when
S/N is greater than 1

R0
, where R0 = β/γ is known as the

”reproduction rate.” Note that R0 depends only on the char-
acteristics of the disease and transmission and not on the
state S(t), I(t), R(t). In particular, if initially S(0) ' N ,
there will be no epidemic (in the sense that I will always
be decreasing) if R0 < 1, and conversely, there will be an
epidemic with exponential growth if R0 > 1.

Therefore, R0 is an important number, and in particular,
it is the target of most epidemic containment policies; to
make it sub-unitary, you can:

1. Make β small by reducing contacts (lockdown, etc.).

2. Make γ large by isolating the sick (so they are no longer
contagious).

3. Otherwise, finally, make S(0) smaller through vaccina-
tion if it is effective and without side effects (oth-
erwise, it won’t work).

In this (constant parameter!) model, the typical evolu-
tion of I, illustrated in Figure 1.2 on page 8, is as follows:
it grows until a maximum value (corresponding to the ”epi-
demic peak”) and then decreases. Of course, in practice, it’s
more complicated because β will change depending on the
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preventive measures implemented, which in turn will fluctu-
ate, etc.

The total number of infected individuals is

R∞ := lim
t→∞

R(t) = I0 + S0 − lim
t→∞

S(t).

Note that limt→∞ S(t) exists because S(t), I(t), R(t) ≥, ∀t
and S is decreasing).

Let ζ be the size of the epidemic. It can be shown (see
[3]) that ζ is a solution of 1− ζ

S(0) = e−R0(ζ+I(0)).

Remark 2.49. Note that S∞ := limt→∞ S(t) 6= 0; there-
fore, even in the absence of any protective measures, the
epidemic will not affect everyone. It is then called the phe-
nomenon of herd immunity in the SIR model. However,
’not everyone’ can still include too many people, and in
practice, epidemic containment measures must be taken.

In practice: β and γ are unknown, so we proceed in 2 steps

� Inversion: find β, γ from observations R(n),n = 1,. . . ,
Nmax

� Prediction: calculate S(t), I(t), t ≥ Nmax

Remark 2.50. Sometimes more complicated models are
necessary, such as: S → E → I → R or as in [1].
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2.10 Ordinary Differential Equations Ex-
ercises

Exercise 2.1. (Gronwall’s Lemma: Integral Variant)

Let T > 0 (it can also be∞), a(t), b(t), λ(t) be continuous
functions on [0, T ], where λ(t) ≥ 0 for all t. Define Λ(t) =∫ t

0 λ(τ)dτ .

1. If for all t > 0:

a(t) ≤ b(t) +

∫ t

0
λ(s)a(s)ds, (2.46)

then

a(t) ≤ b(t) +

∫ t

0
eΛ(t)−Λ(s)λ(s)b(s)ds. (2.47)

Indication: Estimate the derivative of A(t) = e−Λ(t)
∫ t
0 λ(s)a(s)ds.

Alternative: Let ξ be the right-hand side of (2.47). It also satisfies

ξ(t) = b(t) +
∫ t
0 λsξsds (direct calculation or use V (t) =

∫ t
0 λξ), i.e.,

(2.46) with equality. It is then natural to want to show that a(t) ≤ ξ(t)
for all t; this is done by bounding ξ − a using (2.46) and the equation

for ξ.

2. If b is differentiable with an integrable derivative on
[0, T ], then

a(t) ≤ eΛ(t)

(
b(0) +

∫ t

0
e−Λ(s)b′(s)ds

)
. (2.48)

3. If, in addition, b is monotonically increasing, then

a(t) ≤ eΛ(t)b(t). (2.49)

4. Verify that in the absence of the assumption λ(t) ≥ 0,
a counterexample is λ(t) = λ < 0, b(t) = b + ω(t) ,
supp(ω) ⊂]0, T [, a(t) = beλt.
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Exercise 2.2. (Gronwall: Differential Variant without the
sign assumption)

Let T > 0 (it can also be ∞), g(t), λ(t) be continuous
functions on [0, T ], and a(t) a differentiable function with a
continuous derivative on [0, T ]. Define Λ(s) =

∫ t
0 λ(τ)dτ .

If for all t > 0:

a′(t) ≤ g(t) + λ(t)a(t) (2.50)

then

a(t) ≤ eΛ(t)a(0) +

∫ t

0
eΛ(t)−Λ(s)g(s)ds. (2.51)

Indication: Estimate the derivative of A(t) = e−Λ(t)a(t).

Exercise 2.3. (Gronwall: Discrete Variant)
Let kn be a sequence of positive real numbers and φn ≥ 0

a sequence such that

φ0 ≤ g0 (2.52)

φn ≤ g0 +

n−1∑
s=0

ps +

n−1∑
s=0

ksφs, n ≥ 1. (2.53)

If g0 ≥ 0 and pn ≥ 0 for all n ≥ 0, then

φn ≤
(
g0 +

n−1∑
s=0

ps

)
exp

(
n−1∑
s=0

ks

)
(2.54)

Exercise 2.4. Consider the Cauchy problem:

x′(t) = 2|x(t)|1/2 (2.55)

x(0) = 0 (2.56)

1. Show that for any constant λ ∈ [0,∞], this problem has
the solution xλ(t) = (t − λ)2 if t ≥ λ and xλ(t) = 0
otherwise. Comment on uniqueness.
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2. Write an explicit/implicit Euler scheme and explain to-
wards which solution xλ(t) it converges numerically.

Exercise 2.5 (Existence of Implicit Schemes). Let Ψ : R+×
R×R→ R be Lipschitz with respect to all arguments, and let
h > 0.

1. Show that the equation

y = x+ hΨ(t, x, y), (2.57)

has a unique solution for small enough h and provide
a numerical method to compute it. Hint: Picard itera-
tions can be used. Notation: the solution will be denoted
by y = s(t, x, h).

2. Now, let y be a solution of (2.57), and φ be the function
defined by

y = x+ hφ(t, x). (2.58)

Provide the formula for φ in terms of s(·) and Ψ(·) and
show that φ is well-defined and Lipschitz for sufficiently
small h.

Exercise 2.6 (Stability of Implicit Schemes). By using possi-
bly Exercise 2.5, show that the Crank-Nicholson scheme sat-
isfies the assumptions of Theorem 2.13 (page 19) for zero-
stability.

Exercise 2.7 (Theoretical Convergence). Provide a conver-
gence result for the Euler scheme without using the discrete
Gronwall’s lemma.

Hints: Start without round-off errors and establish a re-
currence formula for the error.

Exercise 2.8 (RK Writing). Verify that the Heun’s method
is indeed a two-step Runge-Kutta method and write down the
corresponding Butcher tableau.

Do the same for the modified Euler method:

un+1 = un + hf(tn +
h

2
, un +

h

2
fn)
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Exercise 2.9 (θ-Scheme). Consider the ”θ-scheme”:

un+1 = un + h {(1− θ)f(tn, un) + θf(tn+1, un+1)} .

1. Write down the Butcher tableau of the scheme.

2. Show that the stability region of this scheme includes
{z = hλ;Re(z) < 0} if and only if θ ≥ 1/2.

Exercise 2.10 (Multi-Step Methods). 1. Show that the BDF-
2 scheme (2.38) satisfies the consistency conditions.

2. Show that for BDF-2, the truncation error is indeed of
order 2.

3. Determine the order of the truncation error for the Adam-
Bashforth scheme (2.37).

Exercise 2.11 (SIR Model). Write one step of the implicit
Euler method for the system

dS

dt
= −rSI,

dI

dt
= rSI − aI,

dR

dt
= aI.

Exercise 2.12 ((Identification of ODE Schemes)). With the
notations from the lecture, a student intends to numerically
solve the Lorenz system: x′(t) = σ(y(t) − x(t)), y′(t) =
x(t)(ρ−z(t))−y(t), z′(t) = x(t)y(t)−βz(t). He has three pro-
grams L1, L2, and L3, each implementing a different scheme
in the list: Explicit Euler, Implicit Euler, Crank-Nicholson.
He performs the following tests: he runs the three programs
with σ = 10, β = 8/3, and ρ = 28. h = 10−2, starting
from (x0, y0, z0) = (1, 2, 3). He obtains vectors representing
the numerical solution after TWO time steps (to 1× 10−3

accuracy):
Program L1: v_1=[1.228, 2.511, 2.893]

Program L2: v_2=[1.213, 2.483, 2.886]

Program L3: v_3=[1.244, 2.543, 2.900]
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1. Recall the definitions of the three schemes.

2. Find the values that the Explicit Euler scheme obtains
after ONE time step.

3. Determine which scheme each program uses. Rigor-
ously justify your answer.

Note: It is possible to solve the problem without excessive calculations or a

calculator. If necessary, approximate to 3-4 decimal places. Solution on page

99.

Various other exercises (Additional ODE)

Exercise 2.13. Consider the Cauchy problem:

x′ = 2y, (2.59)

y′ = −2x− 4x3 − y, (2.60)

with initial values (x(0), y(0)) = (x0, y0) 6= (0, 0). Show that
this problem has a maximal solution over the interval ]α, β[
(with −∞ ≤ α < β ≤ ∞).

Exercise 2.14. Consider the Cauchy problem:

x′ = 2y(z − 1), (2.61)

y′ = −x(z − 1), (2.62)

z′ = −xy, (2.63)

with initial values (x(0), y(0), z(0)) = (x0, y0, z0). Show that
this problem has a maximal solution over the interval [0,∞[.

Exercise 2.15 (Autonomous systems). Consider the system
x′ = f(x) with f being C1 class. The state x is a vector in
Rd.

1/ Let x1 and x2 be two solutions of this system. Then if
these solutions touch at a point, they are equal.

2/ So, let x be a solution. Then either t 7→ x(t) is injec-
tive, or it is periodic.
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2.11 ODE Python lab

Exercise 2.16 (Numerical precision). Implement exercise
2.4 in order to observe all the behaviours described in the
lecture for EE and IE with finite precision or not.

Exercise 2.17 (SIR model, scheme order). Write a pro-
gram that solves the SIR system (2.43)-(2.45) using the Eu-
ler Explicit, Heun, and Runge-Kutta schemes of order 4 with
Butcher table (2.30). Take as an example S0 = 10.06, I0 =
10, R0 = 0 (but work with the proportions of the total popu-
lation), r = 0.5, a = 0.33, T = 150.0, N = 150 (h = T/N).

1. Implement it using the ”odeint” function in python (with-
out any scheme).

2. Study the order of the schemes by varying h and com-
paring it with the solution found by ’odeint’ at time T
(take the error on ”S”). For this study, take T0 = 52,
T = 60 (get the initial values at time T0 from the previ-
ous calculation) and h = 0.05, 0.01, 0.1, 0.5, 1, 2, 4. The
result should be similar to that in figure 2.2.

3. Study the impact of control policies that will change r
and a.

Exercise 2.18. Numerically study the stability of Euler Ex-
plicit for the case of the system x′(t) = λx(t) with λ = i,
T = 100 · 2π, h = 2π/100. Typical results are in figure 2.3.
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Figure 2.2: Results for exercise 2.17
.
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Figure 2.3: Stability of EE and IE schemes.



Chapter 3

Automatic
Differentiation,
Backpropagation,
Optimization, Control

3.1 Introduction

The goal of this chapter is to provide some insights into how
to automatically compute gradients (given the code that com-
putes the function). This is known as automatic differenti-
ation; one way to implement it is through backpropagation,
which is used in optimization and control problems. Let’s
start with some examples.

3.1.1 Example 1: Explicit function

Calculating the gradient of a function with 3 variables f(x, y, z) =
(3x2 + y)z−x. This case is quite simple; we can perform the
operations manually to calculate ∇f = (∂xf, ∂yf, ∂zf). This
will serve as a textbook case and verification.

45
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3.1.2 Example 2: Optimization in an epidemio-
logical model

We now consider a current context with the SIR system, seen
previously. The system is of the form X ′ = f(X(t), u(t))

Ṡ = −βSI/Np

İ = βSI/Np − γI
Ṙ = γI

with u(t) = β(t) = β the control and Np the total population.

Thus, the goal is to minimize the cost of containment (
∫ T

0 c(β(t))dt)
and the number of infected people (S(0)−S(T )) over the pe-
riod [0,T]. In other words, we seek:

min
β
J [β] := S(0)− S(T ) +

∫ T

0
c(β(t))dt

We have initially:

∂

∂β

[∫ T

0
c(β(t))dt

]
= c′(β(t)).

However, the difference S(0) − S(T ) is much less obvious to
differentiate because β does not appear explicitly, although
it does appear in this function.

3.1.3 Example 3: Neural networks (NN)

Suppose we have a database Ω; we then wish to define a neu-
ral network, Neural Network (NN), that will ”learn” based
on certain results from this database, ω ∈ Ω.

We will then seek to optimize certain parameters X, so
that the output of our network is as close as possible to the
chosen examples ω. Thus, it is an optimization problem:

arg min
X
{Eω (L(X,ω))}

We will be concerned with neural network of which we
give an example below. The principle is as follows: we have
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an input layer, called the Input Layer, a certain number of
hidden layers, the Hidden Layers, and an output layer, the
Output Layer, see figure 3.1 for an illustration.

Output

Hidden
layer 1

Hidden
layer 2

Input
layer

Output
layer

Connexion
para-
meter
W2

Connexion
para-
meter
W3

Connexion
para-
meter
W1

Figure 3.1: Example of a neural network

Each of the hidden layers (Ỹ , Y ) performs the following
calculation: We take all the results from the previous layer,
we assign them a weight (a vector W , and a bias b). We
then obtain Ỹ and finally apply an activation function A
(for example, the ReLU function which is the positive part:
ReLU(x1, ..xN ) = ((x1)+, ..., (xN )+), we get Y .

Finally, we apply an output function g to the last layer
(for example, a sigmoid-type function x 7→ 1

1+e−x which trans-
forms the input into an output of type ’probability’, i.e., a
number between 0 and 1). If we have to choose between K
classes, we can use the softmax function

x ∈ RK 7→ s(x) :=

(
exk∑K
`=1 e

x`

)K
k=1

∈ RK , (3.1)

which returns a probability distribution, and in particular the
component s(x)k = exk∑

` e
x`

of the result can be interpreted as

the probability that label k is correct one.
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In general, we can describe the output Yn+1 of a given
layer n + 1, with respect to the output Yn of the previous
layer n, as follows:

Ỹn+1 = Wn+1Yn + bn+1

Yn+1 = An+1

(
Ỹn+1

)
We then seek to optimize the weights W as well as the

biases b, that is, to optimize:

X = (W1, b1, ...,Wn, bn)

To minimize a loss function: L(X,ω) which describes ”the
difference between the estimation by the neural network with
parameters X, and the examples ω”. This minimization can
then be performed with gradient descent.

3.2 Finite Difference Approach

A first idea would be to use the formula

f ′(x) =
f(x+ h)− f(x)

h
+O(h). (3.2)

This formula is derived using the Taylor series. It is called
the formula of finite differences (non-centered). There is also
another more accurate formula

f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2). (3.3)

It is also derived with the Taylor series (exact to order 2
with remainder of order 3). The approximation (3.3) is called
centered finite differences of order 2.

Now let’s analyze the cost of such a formula for a general
function G(y1, ..., yN ). It should be noted that in general,
the most expensive part is the evaluation of the function G.
Thus the cost will be expressed in terms of the number of
evaluations of the function G needed to calculate ∇XG.
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For example, if we want to obtain ∂ykG we can use the
approximation (3.3) for the function

x 7→ f(x) := G(y1, ..., yk−1, x, yk, ..., yN ). (3.4)

This means that calculating ∂ykG will cost two evaluations of
G. So calculating ∇XG as a whole will cost 2N evaluations of
G which is prohibitive when N is large (for neural networks
N can be of the order of 109!). Another approach is needed.

To know more 3.1. However, finite differences are
used to independently verify the implementation that
will be done with automatic differentiation detailed
later on.

�
Warning 3.2. Generally, one also needs to pay

attention to numerical precision. If we assume that
the numerical precision of the function f calculation is
10−16, then we will have an error of 10−16

2h +h2; this can
be minimized with respect to h to obtain the optimal
error order which will be O(10−10.66) (achieved for h =
O(10−16/3)). Note that in particular, we never achieve
the order of 10−16 for the derivative calculation (this
can be slightly improved by using higher-order formulas
than 2 ... but which have an even greater cost).

3.3 Computational Graphs, Notions of
Forward and Backward

3.3.1 Direct Computational Graphs

We now delve into the heart of the matter: computational
graphs.

Definition 3.3. Computational Graph. A computational
graph is a directed, connected, acyclic graph, in which the
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nodes correspond to operations that create new variables using
the values of variables from incoming nodes.

Each variable can thus be used by a target node, and each
operation takes as input the result of previous operations. Its
own result can then be used by other target operation nodes.

Let’s take the example of the function f : R3 → R defined
by:

f(x, y, z) = (3x2 + y)z − x. (3.5)

We can associate with this function f the computational
graph in figure 3.2.

u2 = y

u1 = x

u3 = z

u4 = 3u21

u5 = u4 + u2

u6 = u5 × u3

f = u7 = u6 − u1

Figure 3.2: Computational graph of f in equation (3.5).

Remark 3.4. the yellow nodes (u1, u2, u3) have no in-
coming degrees, they are nodes that contain only the input
variables to our function f . The blue node u7 constitutes
the output of the function f . This graph is said to be direct:
it performs the same operations as those of the function.

Definition 3.5 (Input, Output). The Input of a direct
computational graph consists of all nodes with zero incoming
degree. The Output of a computational graph consists of all
nodes with zero outgoing degree.

Example 3.6. Taking again figure 3.2, the yellow nodes
(u1, u2, u3) are Inputs, the blue node u7 is an output.
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U4 U5 U6 U7

number of variables 1 2 2 2

function 3U2
1 U4 + U2 U5 × U3 U6 − U1

Table 3.1: Functions of the nodes of the graph in figure 3.2.

In table 3.1 we specify the functions that define each node
of the graph in figure 3.2. In an optimization problem, we
will seek to obtain the gradient of the function computed by
the graph. This is where the notion of inverse computational
graph comes in.

3.3.2 Backward Computational Graphs

We begin with some reminders concerning the computation of
derivatives of composite functions. We assume all functions
to be sufficiently regular. Let f : RL → R be a function and
g1, . . . , gL functions from RN to R, and let ∀X ∈ RN :

F (X) := f(g1(X), . . . , gL(X))

The derivative of the function F with respect to Xk is given
by:

∂F

∂Xk
=

L∑
l=1

∂f

∂gl
(g1(X), . . . , gL(X))

∂gl
∂Xk

. (3.6)

We recall that the gradient of the function F is the vector:

∇XF =

(
∂F

∂X1
, . . . ,

∂F

∂XL

)
. (3.7)

Sometimes the notation ”∇XF” is also seen as ”JXF”.

To know more 3.7. We recall the definition of the
first-order derivative (Jacobian):

Definition 3.8 (Jacobian). Let H : RN → RP with
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the notations, for X = (X1, ...XN ) ∈ RN :

H(X) =

H1(X)
...

HP (X)

 . (3.8)

The Jacobian matrix of H is the matrix of the deriva-
tives of H written as follows

JXH =


∂H1
∂X1

· · · ∂H1
∂XN

... · · · ...
∂HP
∂X1

· · · ∂HP
∂XN

 ∈ RP×N . (3.9)

In particular (JXH)ij = ∂Hi
∂Xj

. Sometimes the trans-

pose is also used DH
DX = DXH = (JXH)T .

Remark 3.9. The function F : RN → R is in fact
the composite function f ◦ g. We have:(
∂F

∂X1
, . . . ,

∂F

∂XL

)
= JXF = JX(f◦g) = Jgf×JXg,

(3.10)
where ”×” denotes the usual matrix-vector product.
This is a formula for deriving composite functions.

Returning to the graph 3.2; we employ the following no-
tation:

δUk =
∂f

∂Uk
. (3.11)

Obviously, δU7 = δf = 1. For the others it is not as imme-
diate but we can see immediately that this calculation seems
to be easier to develop in reverse, which is why it will be
called backward. Let’s be more precise.

To use the formula (3.6), the calculation must be put in
this form. This is not possible with the initial graph but with
a ’layered’ version as in figure 3.3. where each layer contains
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all the variables necessary to calculate the values of the next
layer: the last layer contains only U7, its derivative is already
calculated. The penultimate layer contains only U6 and U1,4

(which propagates the value of x). We can use the composite
derivation to obtain δU6 = ∂U7

∂U6
= 1, according to the formula

of U7 in table 3.1; similarly δU1,4 = ∂U7
∂U1,4

= −1.

So we continue backwards; this new layer contains U1,3,
U5 and U3,3. The idea is to see U1,3, U5 and U3,3 as inputs,
the next layer U6 and U1,4 as intermediate variables and U7 as
the output. We then apply the composite derivation formula,
for example:

δU5 =
∂f

∂U5
=

∂f

∂U6
·∂U6

∂U5
+

∂f

∂U1,4
·∂U1,4

∂U5
= δU6 ·U3,3+0 = U3,3.

The calculation can thus continue. Pay attention to the
final calculation of δU1 which will have two non-zero terms.

U2 = y

U1 = x

U3 = z

U4 = 3U2
1

U1,2 = U1

U2,2 = U2

U3,2 = U3

U5 = U4 + U2,2

U1,3 = U1,2

U3,3 = U3,2

U1,4 = U1,3

U6 = U5 × U3,3 U7 = U6 − U1,4

Figure 3.3: Layered computational graph of f in equation
(3.5). It was built by adding variables that will be necessary
later in the form of new trivial variables, such as U1,2 = U1,
etc.

Remark 3.10. This ’layered’ representation introduces
additional variables, here in red, but has the advantage
of having a block structure where each block uses only the
block that directly precedes it. This solution has the advan-
tage of being rigorous but the disadvantage of complicating
the calculations.

To simplify the calculations, the idea is to keep the initial
graph but to follow the following rule: going backward from
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the output to the inputs, we calculate the derivative corre-
sponding to a variable Ua only when all the derivatives δUb
of the boxes Ub such that an arrow between Ua and Ub ex-
ists have been calculated. Put simply: when everyone down-
stream of Ua in the graph has its derivative calculated, then
we can also calculate the derivative δUa. In our case, for ex-
ample, this means attempting to calculate δU1 only once δU4

and δU1,2 are known. The calculation results in the figure
3.4.

δU2 = δU5 · ∂U5

∂U2
= U3

δU1 = δU4 · ∂U4

∂U1
+ δU7 · ∂U7

∂U1

= 6U3 × U1 − 1

δU3 = δU6 · ∂U6

∂U3
= U5

δU4 = δU5 · ∂U5

∂U4
= U3

δU5 = δU6 · ∂U6

∂U5
= U3

δU6 = ∂U7

∂U6
= 1

δU7 = 1

Figure 3.4: Backward computational graph of f in equation
(3.5).

3.3.3 Summary

The remarks below are in practice the most useful part of the
whole chapter. Read them carefully.

Important technique 3.11. In summary, suppose
given a (directed) forward computational graph G =
(V,E) which encodes the direct operations e.g., as our
function:

� V = {Ua, a = 1, ...nv} are all required variables

� E are the edges i.e., if (a, b) ∈ E then variable
Ua is used to compute Ub.
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Then it is possible to construct a backward computa-
tional graph GB = (V,EB) with EB = {(b, a)|(a, b) ∈
E} which encodes the computation of the derivatives.
Then, assuming that G is connected, the last vertex is
final (i.e., out-degree null) and denoting δUa := ∂Unv

∂Ua
then :

δUnv = 1, ∀a < nv : δUa =
∑

(a,b)∈E

δUb ·
∂Ub
∂Ua

. (3.12)

In particular the computation on the backward graph
starts from Unv and for any other a, one calculates δUa
only after all δUb with (a, b) ∈ E have been computed.

3.4 Example 1: Neural Networks

Suppose we have a training dataset Ω, and we want to define
a neural network (NN) that will ”learn” from this dataset,
ω ∈ Ω.

We will then seek to optimize certain parameters X, so
that the output of our network is as close as possible to the
(known) output for the examples ω in the dataset Ω (for
all ω ∈ Ω the correct output is known; we are thus in the
context of so-called supervised learning). It is therefore an
optimization problem:

arg min
X
{Eω (L(X,ω))} (3.13)

We propose to study the neural network defined by the
schema illustrated in figure 3.1.

3.4.1 Problem Definition

The network consists of an input layer, called Input Layer, a
number of hidden layers, the Hidden Layers, and an output
layer, the Output Layer. Each of the hidden layers (Ỹ , Y )
performs the following calculation: we take all the results
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from the previous layer, we assign them a weight (a vector
W , and a bias b). We then obtain Ỹ and finally apply an
activation function A, to obtain Y . Finally, we apply an
output function g to the last layer. In general, we can describe
the output Yn+1 of a given layer n+ 1, relative to the output
Yn of the previous layer n as follows:

Ỹn+1 = Wn+1Yn + bn+1

Yn+1 = An+1

(
Ỹn+1

)
We then seek to optimize the weights W as well as the biases
b, i.e., to optimize:

X = (W1, b1, ...,Wn, bn)

To minimize a loss function: L(X,ω) which describes ”the
difference between the estimation by the neural network with
the parameters X, for the examples ω”. This minimization
can then be performed, for example, with a stochastic gradi-
ent descent algorithm (SGD).

3.4.2 Computational Graph of the Neural Net-
work

In our example defined by the graph in Figure 3.1, we have:

� An Input Layer, Y0 ∈ R4;

� A first Hidden Layer, (Ỹ1, Y1) ∈ R5;

� A second Hidden Layer, (Ỹ2, Y2) ∈ R7;

� An Output Layer, O = g(Y2) ∈ R.

Therefore, we have the computational graph presented in
Figure 3.5.
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Y0 Ỹ1 Y1 Ỹ2 Y2 g(Y2)

W1

b1

W2

b2

A1 A2 g

Figure 3.5: Forward propagation graph of the neural network

Y0 Ỹ1 Y1 Ỹ2 Y2 g(Y2)

W1

b1

W2

b2

δA1
∂Ỹ2
∂Y1 δA2 δg

∂Ỹ1
∂W1

∂Ỹ1
∂b1

∂Ỹ2
∂W2

∂Ỹ2
∂b2

Figure 3.6: Backward propagation graph of the neural net-
work

3.4.3 Gradient Calculation of the Loss Function

We will now focus on the backward graph of this neural net-
work as well as on the gradient calculation:

We then have (note that this is a symbolic representation,
for rigor it is necessary to employ the Jacobian matrix, see
the sidebar 3.7 page 52):

∂g
∂W2

= ∂g
∂Y2
· ∂Y2
∂W2

= ∂g
∂Y2
· ∂Y2

∂Ỹ2
· ∂Ỹ2
∂W2

∂g
∂b2

= ∂g
∂Y2
· ∂Y2

∂Ỹ2
· ∂Ỹ2
∂b2

∂g
∂W1

= ∂g
∂Y2
· ∂Y2
∂W1

= ∂g
∂Y2
· ∂Y2

∂Ỹ2
· ∂Ỹ2
∂W1

= ∂g
∂Y2
· ∂Y2

∂Ỹ2
· ∂Ỹ2
∂Y1
· ∂Y1
∂W1

= ∂g
∂Y2
· ∂Y2

∂Ỹ2
· ∂Ỹ2
∂Y1
· ∂Y1

∂Ỹ1
· ∂Ỹ1
∂W1

∂g
∂b1

= ∂g
∂Y2
· ∂Y2

∂Ỹ2
· ∂Ỹ2
∂Y1
· ∂Y1

∂Ỹ1
· ∂Ỹ1
∂b1

It is then possible to compute the quadruplet:
[
∂g
∂W1

, ∂g∂b1 ,
∂g
∂W2

, ∂g∂b2

]
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which gives us the gradient of g with respect toX = (W1, b1,W2, b2).
We can then optimize g with respect to X using gradient de-
scent.

Remark 3.12. Note that in reality, we mainly need the
derivative of the loss function L in (3.13); it directly re-
sults from the derivative of g. Moreover, the construc-
tion of the loss function takes into account both objectives
(reproduction of known results) as well as other considera-
tions, for example generalization power; indeed, overfitting
must be prevented. To address this issue, we can introduce
a penalty in the weight update at each iteration of gradi-
ent descent, or perform dropout, i.e., temporarily remove
a neuron to force the algorithm not to overfit.

Remark 3.13. The gradient expressed above corresponds
to the proposition shown earlier: each of the partial deriva-
tives can be expressed as a sum.

To know more 3.14 (Stochastic Gradient Descent).
We recall the formula for gradient descent for a multi-
dimensional function F : Rp → R, with gradient ∇xF :

xn+1 = xn − γn∇xF (xn) .

Under certain assumptions (convexity, γn, ...), the se-
quence (xn)n≥1 converges to the nearest local mini-
mum.
Here, γn is also called the ”learning rate” in the case
of statistical learning. In the case of high dimensions
and when the function F has the form of an average
F = EωF (x, ω) as in equation (3.13), computing the
gradient at a point becomes very costly (and obtain-
ing the average requires an expensive empirical average
to calculate); this is where stochastic gradient descent
(SGD) is used. We then take, among the different gra-
dients ∇xF (x, ω), one value (or several, but in a small
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number) randomly selected.

xn+1 = xn − γn∇xF (xn, ωn) .

Several stochastic gradient descent algorithms combine
different techniques (for learning rate variation as well
as stochastic descent).

3.5 Example 2: Control Problem

We now place ourselves in the context of the SIR system,
seen previously. However, we will start with a more gen-
eral presentation by considering that we use the Explicit Eu-
ler method to solve x′ = f(t, x(t), u(t)) with the function
F (x(T )) to optimize.

3.5.1 Computational Graphs

We solve this problem through the analysis of its computa-
tional graphs. Since we use the Explicit Euler method the
direct computational graph is the one in the top of the fig-
ure 3.7. Of course, this graphs represents only a part of the
whole graph. The complete direct graph will include all time
steps and is presented in Figure 3.8 for N = 2.

Using the usual techniques, we can compute subsequently
the backward computational graph as in figure 3.7 (bottom).

3.5.2 Construction of a Discrete Version of an
Euler-Lagrange Procedure

The direct and backward computational graphs allow to se
the whole procedure as a discrete version of an Euler-Lagrange
framwork.

Consider a general situation when x(t) satisfies the ODE:
x′(t) = f(t, x(t), u(t)) At the discrete level, the EE scheme
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xn xn+1 = xn + vn

vn = hf(tn, xn, un)

un

λn = ∂F/∂xn
= ∂F/∂xn+1 · ∂xn+1/∂xn + ∂F/∂vn · ∂vn/∂xn

λn = λn+1 + λn+1h · ∂f/∂x(tn, xn, un)
λn+1 = ∂F/∂xn+1

∂F/∂vn = ∂F/∂xn+1 · ∂xn+1/∂vn = λn+1

∂F/∂un = ∂F/∂vn · ∂vn/∂un = λn+1 · h · ∂f/∂u(tn, xn, un)

Figure 3.7: Description of the ”forward” mode (top image)
and ”backward” mode (bottom image) for a control problem;
the schema obtained for the adjoint state λn is an Explicit
Euler type discretization of (3.16). Although this seems to
correspond to Implicit Euler, it should be remembered that
(3.16) is solved in reverse in time, which means that for ex-
ample λn+1 is known before λn.

can be written xn+1 = xn + hf(tn, xn, un). The computa-
tional graph reads, for λn = ∂F

∂xn
=: δxn :

λn = λn+1 + λn+1
∂f

∂x
(tn, xn, un)h (3.14)

λN =
∂F

∂xN
=: δxN . (3.15)

The peculiarity of this formula is that we know the end,
namely λN , and we must construct the other values λn. This
leads us to view λ(t) as a solution of a backward-in-time
equation and thus we find ourselves solving, by an Explicit
Euler method, the equation:

λ′(t) = −∂f
∂x

(t, x(t), u(t))λ(t). (3.16)
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x0

v0 = h× f(t0, x0, u0)

u0

x1

v1

u1

x2

v2

u2

x3

Figure 3.8: Complete direct graph of the SIR system for n =
2; the orange circle represents the part that we had previously
plotted in 3.7.

We also obtain a formula for the derivative:

∂F

∂un
= λn+1h

∂f

∂un
(tn, xn, un). (3.17)

In summary, the computational graph shows us that the
derivative can be obtained with the help of solving the ODE
(3.16) involving λ(t), which will be called the adjoint state.
This conclusion is independent of the numerical scheme
used initially to solve the ODE !!

It is also important to note that the cost of this method is
just 2 times the cost of calculating F , and thus independent of
the number N of un values to be optimized (to be compared
with 2N evaluations that would be necessary if using a finite
difference formula like (3.3)).

To know more 3.15. The relation (3.17) is consis-
tent with a formulation of the problem as an Euler-
Lagrange type minimization; it is not a proof, rather
a verification. The minimization can be written as
minx′=f(t,x,u) F (x(T )). We apply the Lagrange mul-
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tiplier method to the function F (x(t)) and introduce
G:

G(x, u, λ) = F (x(T ))−
∫ T

0
(x′ − f(t, x, u))λ(t)dt,

where λ(t) is the Lagrange multiplier. The Euler La-
grange method prescribes to set to zero the partial
derivatives of G with respect to λ, x and u. As ex-
pected, the derivative with respect to the multiplier λ
allows us to obtain the constraint:

∂G

∂λ(t)
= 0⇔ x′ = f(t, x, u).

The derivative with respect to the Lagrange multiplier
λ(t) will allow us to link our computational graph to
the Euler-Lagrange procedure:

∂G

∂x(t)
= − ∂

∂x(t)

∫ T

0
λ(x′ − f(t, x, u))dt

IPP
= − ∂

∂x(t)

[
[λx]T0 −

∫ T

0
xλ′ − λfdt

]
= λ′ − λ∂f

∂x
(t, x(t), u(t)).

We find equation (3.16) again. Thus, the computa-
tional graph allows us to obtain a discrete version of
the Euler-Lagrange procedure for our control variable.
The derivative with respect to x(T ) leads to find that

λ(T ) should be set equal to ∂F (x(T ))
∂x(T ) .

Finally, the derivative of G with respect to the control
u(t) allows to find the gradient of the whole functional
with respect to the control as in the exercise 3.3 :

∂F

∂u(t)
=

∂G

∂u(t)
= ∂uf(t, x(t), u(t))λ(t). (3.18)

To this should be added any derivative involving di-
rectly u : for instance β

2

∫ T
0 u(t)2dt would contribute a

term βu(t).
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3.5.3 Problem Reminder

Let’s now apply the described procedure to our situation of
the SIR model. The problem can be represented by a sys-
tem, which we call SIR. The system is of the form x′ =
f(t, x(t), u(t)) 

.
S = −βSI/Np
.
I = βSI/Np − γI
.
R = γI

with u(t) = β(t) = β the control and x = (S, I,R) the
state. The goal is to minimize the cost of the confinement
(
∫ T

0 c(β(t))dt) and the number of infected people (S(0) −
S(T )) during the period [0,T]. In other words, we seek:

min
β
S(0)− S(T ) +

∫ T

0
c(β(t))dt.

To find the derivative of
∫ T

0 c(β(t))dt with respect to β we
use that (assuming c(·)) is C1 class) for any variation δβ ∈
L2[0, T ] :

∫ T

0
c(β(t) + δβ(t))dt =

∫ T

0
c(β(t))dt

+〈c′(β(·)), δβ(·)〉L2[0,T ] + o(‖δβ‖L2[0,T ]). (3.19)

This relation can be proved easily using the Taylor expansion
for c; by the definition of the Frechet derivative in L2[0, T ]
we obtain thus :

∂

∂β

[∫ T

0
c(β(t))dt

]
= c′(β(·)). (3.20)

On the other hand, the epidemic size S(0)− S(T ) is less
straightforward to differentiate because β does not appear
explicitly, although it is involved in this function.
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The methodology presented in 3.15 can be applied ; we
introduce the adjoint states λ and µ solution of :

λ′(t) = β(t)I(t)(λ(t)− µ(t))/Np, λ(T ) = 1,
(3.21)

µ′(t) = β(t)S(t)(λ(t)− µ(t))/Np + γµ(t), µ(T ) = 0.
(3.22)

Then ∂
∂βS(T ) = −SI(λ− µ)/Np (the equality holds as func-

tions of t).

3.6 Theoretical Appendix: Graph The-
ory

We will introduce some notions of graph theory.

Definition 3.16 (Graph). A (directed /oriented) graph is
a pair G = (V,E) consisting of:

� V a set of vertices;

� E a set of edges, E ⊆ V 2, with (a, b) ∈ E meaning
that there is an edge between a and b. If the graph is
considered oriented then the edge is from a to b.

Example 3.17. See figure 3.9 for an example of a directed
graph.

If the graph is oriented, the edge (a, b) is not the same
as (b, a) (if a 6= b); note the it is possible for an edge/arc to
point to the node from which it originates i.e. (x, x).

Remark 3.18. An undirected graph is a pair G = (V,E)
where E ⊆ {(x, y), (x, y) ∈ V 2, x 6= y} is a set of edges
that connect two different nodes together. An arc is thus
an edge with a direction. We speak of a path from one
node to another to refer to a consecutive sequence of edges
connecting the two nodes.
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2

1

3

4

Figure 3.9: Example of a oriented graph

Definition 3.19 (Connected Graph). A graph is said to
be connected if it is in one piece, i.e., for any pair of nodes
v1, v2 ∈ V there exists a path from node v1 to node v2.

Example 3.20. See figures 3.10 and 3.11 for an example of
a connected or not connected graph.

A

B

C

D

E

F

Figure 3.10:
Connected
graph

A

B

C

D

E

F

Figure 3.11:
Non-
connected
graph

Definition 3.21. Graph without cycles. A graph without
cycles is a graph that contains no path that has the same
starting and ending node.
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The graph in Figure 3.10 has several cycles (notably {A,F,D,C}),
while the one in Figure 3.11 has none.

Definition 3.22 (Node Degrees). Given an arc {x, y} con-
necting nodes x and y, we call the starting node x the source
and the ending node y the target. We then define:

� the out-degree of a node as the number of arcs that
have this node as the source;

� the in-degree of a node as the number of arcs that have
this node as the target.

A graph thus has as many in-degrees as out-degrees.

Example 3.23. In the graph of Figure 3.9:

� the out-degree of node {2} is 2, the out-degree of node
{4} is zero.

� the in-degree of node {3} is 1, the in-degree of node {2}
is 2.

� There are a total of 5 in-degrees and 5 out-degrees,
which confirms our definition: there are as many in-
degrees as out-degrees.
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3.7 Exercises

Exercise 3.1 (Finite differences of orders 3 and 4).

1. Show that

f ′(x) =
2f(x+ 3h)− 9f(x+ 2h) + 18f(x+ h)− 11f(x)

6h
+O(h3).

(3.23)

2. Find a third-order formula of the form:

f ′(x) =
αf(x+ 2h) + βf(x+ h) + γf(x) + δf(x− h)

h
+O(h3).

(3.24)

3. Show that

f ′(x) =
−f(x+ 2h) + 8f(x+ h)− 8f(x− h) + f(x− 2h)

12h
+O(h4).

(3.25)

Exercise 3.2 (Reminder : Euler-Lagrange multipliers
method ).
Find the minimum of the function x+ y under the constraint
x2 + y2 = 1 using the method of Euler-Lagrange multipliers.

Exercise 3.3 (Euler-Lagrange multipliers: finding the
derivative).
Let f, g : R2 → R be C2 functions. Suppose that the equation
g(x, y) = 0 has a unique solution y = Y(x) for each given x,
with Y being C1. Also suppose that for all x: ∇yg(x,Y(x)) 6=
0. Let F : R→ R where F (x) = f(x,Y(x)). We assume Y(·)
is difficult to obtain and we want to compute the gradient
∇xF (x) without using Y(·) too many times. Let L(λ, x, y) =
f(x, y) + λg(x, y).

1. Show that for every x there exists λx such that :

∇yL(λx, x,Y(x)) = ∇λL(λx, x,Y(x)) = 0. (3.26)

2. Show that : ∇xF (x) = ∇xL(λx, x,Y(x)).
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3. Generalize for functions f : Rn × Rn → R, g : Rn ×
Rn → Rn.

Exercise 3.4 (example of computational graph).

1. Write the computational graph for the following compu-
tation: z = x+ sin(x ·y) +x2. Then write the backward
graph for computing the derivatives of z with respect to
x and y. Explicitly calculate the values of these two
graphs for x = 2, y = π/6.

2. Same for the function (x, y, z) 7→ xyzex
2+yz.

Exercise 3.5 (Backward mode IE, cf figure 3.7).

1. Find the formulas for forward and backward mode for
a control problem as in figure 3.7 but with an Implicit
Euler scheme.

2. Similarly, if the forward graph implements a general RK
scheme, find the ”adjoint” scheme, i.e., the one used by
the backward propagation of the adjoint state. What do
you observe?

Exercise 3.6 (computational graph of projection). Let P =
{(x, y, z)T ∈ R3 such that x + y + z = 1} ⊂ R3 and Π :
R3 → P defined for any vector v = (v1, v2, v3)T ∈ R3 by
Π(v) = v − λ(v) · (1, 1, 1)T where λ(v) ∈ R is the only real
number such that Π(v) ∈ P . Let g : R3 → R be a C1 function.

1. Find the formula for λv as a function of v;

2. Write the direct computational graph that computes v 7→
g(Π(v));

3. Write the backward computational graph that computes
the derivatives of g(Π(v)) with respect to the inputs
(components of v).
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4. Compute the derivatives for v = (1, 2, 3)T and g(x, y, z) =
x2 + yz − 2.

Reminder: for any vector a, aT denotes its transpose.

Exercise 3.7 (computational graph of softmax/cross en-
tropy). Compute the loss function for the case of cross-entropy
loss after a final ”softmax” layer (output in R3) and archi-
tecture FC/ReLU 4 − 5 − 7 − 3; compute its derivatives. A
graphical description in figure 3.12.

Input layer
Hidden layer 1
+ activation

Hidden layer 2
+ activation

Output layer

Dimension: 4 Dimension: 5

Dimension: 7

Dimension: 3

Figure 3.12: The neural network in exercise 3.7 page 69.

Exercise 3.8 ((”Layer Normalization”)). A part of the work
of the so-called ”Layer Normalization” layer is the computa-
tion of the standard deviation of a data sample x = (x1, ..., xn).
It is done as follows: first, calculate the empirical mean µ̄ =
(
∑n

k=1 xk)/n, then the empirical variance v =
∑n

k=1(xk −
µ̄)2/(n−1) and finally the estimate of the standard deviation
σ̄ =
√
v.

1. Draw the direct computational graph corresponding to
the above calculations; for each node in the graph, ex-
plicitly specify, as in the lecture, the inputs/outputs and
the operation performed by the node.

2. Similarly, draw the backward computational graph for
the derivatives of the final output with respect to the
inputs;
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3. Compute the derivatives for n = 3, x = (1, 2, 4) with
the help of the direct and backward computa-
tional graphs.

3.8 Automatic differentiation lab

Exercise 3.9. Implement exercise 3.5 for the case of the
SIR model in section 3.1.2. Take the values T = 150,N =
150, h = T/N S(0) = 106, I(0) = 10, R(0) = 0, Ntotal =
S(0) + I(0) +R(0) β = 0.5/Ntotal, γ = 1/3, c(β) = c0/β with
c0 = 10−2.

Exercise 3.10. Build and train a neural network with dense
layers as described in section 3.1.3.



Chapter 4

Stochastic Differential
Equations (SDEs)

4.1 Background on Brownian motion, mar-
tingales, integrals and stochastic pro-
cesses, Itô’s formula

For a review of stochastic calculus, see the notes from [7] from
which these results and exercises 4.3, 4.1 are extracted.

4.1.1 Brownian motion: definition

Definition 4.1 (real Brownian motion). Let B = Bt, t ≥ 0
be a process defined on the probability space (Ω,F ,P) equipped
with the natural (completed) filtration of the process B, de-
noted F, such that:

1. B is a process with continuous trajectories;

2. B is a process with independent increments, meaning
that for all 0 ≤ s ≤ t, the random variable Bt − Bs is
independent of Fs;

3. for all 0 ≤ s ≤ t, the random variable Bt − Bs follows
the normal distribution N (0, t− s).

71
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If additionally B0 = 0 (or B0 6= 0), we say that B is a
standard (or non-standard) Brownian motion.

When the filtration F is given a priori, an F-adapted pro-
cess that satisfies the above conditions is called an F-Brownian
motion.

Throughout, unless explicitly stated otherwise, we assume
B0 = 0.

Remark 4.2. Let B = Bt, t ≥ 0 be an F-Brownian mo-
tion on the filtered probability space (Ω,F ,P;F). Then B
is a Gaussian process with mean function eB(t) = 0 and
covariance operator KB(s, t) := cov(Bs, Bt) = min(s, t).

We denote by B or W the Brownian motions.

4.1.2 Quadratic variation

Definition 4.3. Let t > 0 be a given real number and ∆ :=
t0 = 0 ≤ t1 ≤ · · · ≤ tn = t be a subdivision of the interval [0, t].
The module of the subdivision ∆ is denoted by |∆| and defined
as |∆| := supi |ti − ti−1|. For a process Xt, we denote

V (2)t(X,∆) :=
n∑
i=1

|X(ti)−X(ti−1)|2 . (4.1)

The function t 7→ V
(2)
t (X) := lim|∆|→0 V

(2)
t (X,∆) < ∞ is

called the quadratic variation of X.

Proposition 4.4 (Quadratic variation of Brownian motion).
Let B be a Brownian motion on the probability space (Ω,F ,P).
Then, for all t ≥ 0,

lim
|∆|→0

E
[
|V (2)
t (B,∆)− t|2

]
= 0. (4.2)

This can also be written as V
(2)
t (B,∆)

L2

−→
|∆|→0

t. We say that

the quadratic variation over [0, t] of the Brownian motion ex-

ists in L2 and V
(2)
t (B) = t.
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Intuition 4.5. The quadratic variation sums the
squares of the oscillations of the Brownian motion. As
the time interval becomes smaller and smaller, we ob-
tain a sum of independent increments which will con-
verge to its average. This can be formalized by studying
the χ2 variables representing the quadratic variation of
the Brownian motion.

4.1.3 Integration of processes in L([0, T ])
We consider the sets L(Ω,F ,P;F; [0, T ]) (simply denoted as
L([0, T ])) and L2(Ω,F ,P;F; [0, T ]) (simply denoted as L2([0, T ]))
defined by :

L([0, T ]) :=

{
(Ht)0≤t≤T , F-adapted process

∣∣∣∣[∫ T

0
H2
udu

]
<∞ P− p.s.

}
.

L2([0, T ]) =

{
{Ht, 0 ≤ t ≤ T}, F-adapted process

∣∣∣∣E [∫ T

0
H2
udu

]
<∞

}
.

Theorem 4.6 (Stochastic integral). There exists a unique
linear mapping I that maps any process H ∈ L([0, T ]) to a
process I[H] with continuous trajectories on [0, T ], such that
if H is continuous and locally bounded and ∆n is a sequence
of subdivisions of [0, t] with |∆n| → 0, then (Riemann-Itô
sum property):

P− lim
n→∞

∑
tk∈∆n

Htk(Btk+1
−Btk) =

∫ t

0
HsdBs. (4.3)

If additionally H ∈ L2([0, T ]), then I[H] is a martingale.

Definition 4.7. For H ∈ L([0, T ]), the process I[H] is called
the stochastic integral or Itô integral of H with respect to the
Brownian motion B. We denote

∫ t
0 HsdBs := I[H]t.

Example: exercise 4.1.
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4.1.4 Itô Process

Definition 4.8 (Itô Process). A stochastic process X is called
an Itô process if it can be written in the form

Xt = X0 +

∫ t

0
αudu+

∫ t

0
HudBu (4.4)

where X0 is F0-measurable, αt, t ∈ R+ and Ht, t ∈ R+ are
two F-adapted processes satisfying the integrability conditions

∫ T

0
|αu|du <∞ P− a.s. and

∫ T

0
|Hu|2du <∞ P− a.s.

(4.5)
It is also denoted differentially as: dXt = αtdt+HtdBt.

�
Warning 4.9. The differential form is just a no-

tation resulting from the identity
∫ b
a dXt = Xb −Xa.

The Ito process X is in general not differentiable as
suggested by the particular case α = 0, H = 1 where
we recover the Brownian motion.

From now on, we will denote I as the set of Itô processes
and I2 as the subset of Itô processes, Xt = X0 +

∫ t
0 αudu +∫ t

0 HudBu ∈ I such that:

E
[∫ T

0
|αu|2du

]
<∞ and E

[∫ T

0
|Hu|2du

]
<∞; . (4.6)
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4.1.5 Itô Formula

Intuition 4.10. The exercise 4.1 page 92 shows the
following equality:

∫ T
0 2BsdBs = B2

T − T , which can
also be written differentially as: dB2

s = 2BsdBs +
ds. Therefore, the usual composite derivative formula
df(x) = f ′(x)dx does not apply to f(x) = x2 and
x = Bs because the term −T appears. Let’s take a
closer look: the infinitesimal increment between t and
t + ∆t of an Itô process is of the order αt∆t for the
continuous part and Ht

√
∆tN (0, 1) for the Brownian

part. For small ∆t, it is clearly the Brownian part
that dominates. Let’s make a formal calculation for
a function f(x, y) with x = t, y =

√
t in the limit of

small t:

f(t,
√
t) = f(0, 0) +

∂f

∂y
(0, 0)

√
t+

∂f

∂x
(0, 0)t

+
1

2

∂2f

∂x2
t2 +

∂2f

∂x∂y
t
√
t+

1

2

∂2f

∂y2

√
t
2

+ o(t2 +
√
t
2
).

To take into account all terms of order less than or

equal to t, it is necessary to include the term 1
2
∂2f
∂y2

√
t
2
,

that is to say, to write:

f(t,
√
t) = f(0, 0) +

∂f

∂y
(0, 0)

√
t+

∂f

∂x
(0, 0)t

+
1

2

∂2f

∂y2
t+ o(t). (4.7)

It is this additional term that constitutes the novelty
and must be taken into account. It comes from the
non-differentiability of the Brownian motion, which
also leads to the non-differentiability of t 7→ f(t,

√
t)

at zero, and therefore the presence of a term of order√
t and terms

√
t
2
.

Theorem 4.11 (Itô’s formula). Let f : R+ × R → R be
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a C1,2 function (i.e., differentiable once in time with con-
tinuous derivative and twice in space with continuous second
derivative). Let X ∈ I be an Itô process Xt = X0 +

∫ t
0 αudu+∫ t

0 HudBu. Then, the process Yt = f(t,Xt) ∈ I and

f(t,Xt) =f(0, X0) +

∫ t

0

∂f

∂t
(u,Xu)du+

∫ t

0

∂f

∂x
(u,Xu)dXu

+
1

2

∫ t

0

∂2f

∂x2
(u,Xu)H2

udu

(4.8)
or, in differential form,

df(t,Xt) =

{
∂f

∂t
+ αt

∂f

∂x
+H2

t

1

2

∂2f

∂x2

}
(t,Xt)dt+Ht

∂f

∂x
(t,Xt)dBt.

(4.9)

Example: Yt = X2
t .

4.1.6 Stochastic differential equations

Ǵiven two applications a and b we wonder if there exists an
Itô process X = {Xt, t ≤ 0} whose (unique) decomposition
satisfies in differential notation :

dXt = a(t,Xt)dt+ b(t,Xt)dBt.

See exercise 4.3 page 93 for examples of such equations ap-
pearing in mathematical finance models.

Theorem 4.12. Let T > 0 and a(·, ·), b(·, ·) : [0, T ]×R→ R
be measurable functions such that there exist constants C,L >
0 satisfying for all x, y ∈ R, t ∈ [0, T ] :

|a(t, x)|+ |b(t, x)| ≤ C(1 + |x|) (4.10)

|a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| ≤ L|x− y|.(4.11)

Let Z be a random variable independent of F∞ = σ{Bs, s ≥
0} and such that

E[Z2] <∞.
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Then the stochastic differential equation

Xt = Z +

∫ t

0
a(s,Xs)ds+

∫ t

0
b(s,Xs)dBs, t ∈ [0, T ],(4.12)

or in differential notation

dXt = a(t,Xt)dt+ b(t,Xt)dBt, (4.13)

admits a unique solution X = {Xt, t ≤ 0} such that:

1. X is continuous with respect to t;

2. X is adapted to the filtration FZt generated by Ft and
Z;

3. X ∈ L2([0, T ]) i.e.,:

E
[∫ T

0
X2
t dt

]
<∞.

4.1.7 Framework summary

We place ourselves in a framework of a filtered probability
space (Ω,P,F , (Ft)) and (Wt)t≥0 is a Brownian movement
which generates the filtration (Ft).

We call Itô process, a stochastical process (Xt)0≤t≤T with
values in R such that:

P− ps ∀t ≤ T : Xt = X0 +

∫ t

0
Ksds+

∫ t

0
HsdWs, (4.14)

or equivalently:

dXt = Ktdt+HtdWt, (4.15)

with X0 given F0−measurable, (Ht) and (Kt) adapted to

(Ft),
∫ T

0 |Ks| ds <∞ and
∫ T

0 H2
sds <∞,P− ps.

When K and H depend on X we obtain Stochastic Dif-
ferential Equations (SDE) ; we recalled above the hypothesis
under which we can ensure a solution to the SDE exists. The
approximation of the solution is the subject of this chapter.
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4.2 Euler-Maruyama and Milshtein scheme

The methods that we are going to present concern the reso-
lution of the following type of equations:

dXt = a(t,Xt)dt+ b(t,Xt)dWt, (4.16)

or, in full form:

Xt = X0 +

∫ t

0
a(s,Xs)ds+

∫ t

0
b(s,Xs)dWs. (4.17)

As in chapter 2 we keep the notations 0 = t0 < t1 < · · · <
tn < · · · < tN = T . Unless otherwise stated, we will assume
that tn+1 − tn is constant equal to h.
Euler-Maruyama (E-M) scheme: This scheme proposes
to estimate X(tn) by Yn verifying:

Yn+1 = Yn + a(tn, Yn)(tn+1 − tn) + b(tn, Yn)(Wtn+1 −Wtn).

Remark 4.13. When tk+1 − tk = h for all k and if we
note ∆Wn := Wtn+1−Wtn, an := a(tn, Yn), bn := b(tn, Yn)
then the E-M scheme is written:

Yn+1 = Yn + anh+ bn∆Wn, Y0 = X(0).

Remark 4.14. Note that an and bn are Atn-measurable
random variables, where (At)t≥0 is the filtration generated
by (Wt)t≥0.

Milshtein scheme: It is given by the relation:

Yn+1 = Yn+anh+bn∆Wn+
1

2
bnb
′
n[(∆Wn)2−h], Y0 = X(0).

To know more 4.15. Suppose a(t,X) = αX and
b(t,X) = βX, are there any implicit schemes possi-
ble ? A suggestion could be: Yn+1 = Yn + αYn+1h +
βYn+1∆Wn which means that Yn+1 = Yn

1−αh−β∆Wn
.

Now, this is unbounded since if ξ ∼ N (0, 1) then
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E( 1
|ξ|) = +∞, which leads to numerical problems and

instabilities. So this will not work this way. It would
therefore be better to use: Yn+1 = Yn + αhYn+1 +
βYn∆Wn; For Milshtein we could use at most an im-

plicit term while keeping this term bnb′n
2 (∆W 2

n − h) ex-
plicit.

4.3 Weak and Strong Consistency

As a reminder, for an ODE, consistency could be written in
the form: truncation error is null as h → 0, or τ(h) = o(1).
This motivates the following definition:

Definition 4.16 (Weak Consistency). A scheme that yields
(Yn)n ≥ 1 is said to be weakly consistent if:

(W1) lim
h→0

E

[(
E
[
Yn+1 − Yn

h

∣∣∣Atn]− an)2
]

= 0.

(W2) lim
h→0

E

[(
E
[

(Yn+1 − Yn)2

h

∣∣∣∣Atn]− b2n)2
]

= 0.

Theorem 4.17. Let T > 0 and a(., .), b(., .), b′(., .) : [0, T ]×
R → R be bounded functions. Then the Euler-Maruyama
(E-M) and Milstein (M) schemes defined earlier are weakly
consistent.

Proof. We start with the Euler-Maruyama Scheme (EM)
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and check first the (W1) condition.

E
[
Yn+1 − Yn

h
|Atn

]
− an

= E
[
Yn + anh+ bn∆Wn − Yn

h
|Atn

]
− an

= E
[
an + bn

∆Wn

h
|Atn

]
− an

= an + bnE
[

∆Wn

h
|Atn

]
− an

(since an, bn are measurable w.r.t. Atn)

= bnE
[∆Wn]

h
( since ∆Wn ⊥ Atn) = 0. (4.18)

We now verify (W2):

E
[

(Yn+1 − Yn)2

h
|Atn

]
− b2n = E

[
(anh+ bn∆Wn)2)

h
|Atn

]
− b2n

= E
[
ha2

n + 2an∆Wnbn + b2n
(∆Wn)2

h
|Atn

]
− b2n

= ha2
n + 2anbnE[∆Wn] + b2n

E[∆W 2
n ]

h
− b2n

= ha2
n( since ∆Wn ∼ N (0, h))

L2−→ 0. (4.19)

We now consider the Milstein Scheme (M) and start with
checking (W1). Recall that ∆Wn ∼ N (0, h). We can
write :

E
[
Yn+1 − Yn

h
|Atn

]
− an

=
1

h
E
[
anh+ bn∆Wn +

bnb
′
n

2
(∆W 2

n − h)|Atn
]
− an

=
anh

h
+ bn

1

h
E[∆Wn]︸ ︷︷ ︸

=0

+
1

2h
bnb
′
n E[∆W 2

n − h]︸ ︷︷ ︸
=0

−an

= 0 (4.20)



4.3. WEAK AND STRONG CONSISTENCY 81

To check (W2) we compute :

E
[

(Yn+1 − Yn)2

h
|Atn

]
− b2n

=
1

h
E
[
(anh+ bn∆Wn +

bnb
′
n

2
(∆W 2

n − h))2|Atn
]
− b2n

= E
[(
an
√
h︸ ︷︷ ︸

O(
√
h)

+bn
∆Wn√
h

+
bnb
′
n

2

(
∆W 2

n − h√
h

))2

|Atn
]
− b2n

= E
[
a2
nh+ b2n

∆W 2
n

h
+
b2nb
′2
n

4

(∆W 2
n − h)2

h
+ 2anbn

√
h

∆Wn√
h

+

2an
√
h
bnb
′
n

2

∆W 2
n − h√
h

+
b2nb
′
n

2
√
h

∆Wn
∆W 2

n − h√
h

|Atn
]
− b2n

= a2
nh+

b2nb
′2
n

4
E[

(∆W 2
n − h)2

h
] +

b2nb
′
n

2
√
h
E
[
∆Wn

∆W 2
n − h√
h

]
︸ ︷︷ ︸

=0

= a2
nh+

b2nb
′2
n

4
h E[(N(0, 1)2 − 1)2]︸ ︷︷ ︸
bounded in terms of h

= O(h) −→
h→0

0. (4.21)

Remark 4.18. The exact solution satisfies (W1) and
(W2), see exercise 4.5 page 94.

Remark 4.19. The weak consistency concerns only cer-
tain functions depending on the solution, particularly the
moments.

Definition 4.20 (Strong Consistency). A scheme (Yn)n≥1 is
said to be strongly consistent if:
(F1) condition (W1) is satisfied

(F2): lim
h→0

E
[

1
h |Yn+1−Yn−E[Yn+1−Yn|Atn ]−bn∆Wn|2

]
= 0

Theorem 4.21. Assume a, b, a′ and b′ are bounded. Then
the Euler-Maruyama (E-M) and Milstein (M) schemes are
strongly consistent.
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Proof. a) Euler-Maruyama Scheme (E-M)
(F1) is satisfied by the previous theorem.
Verify (F2):
Yn+1−Yn−E[Yn+1−Yn|Atn ]− bn∆Wn = anh+ bn∆Wn−

anh︸︷︷︸
E[Yn+1−Yn|Atn ]

−bn∆Wn = 0

b) Milstein Scheme (M)
(F1) is satisfied by the previous theorem.
Verify (F2):
Yn+1−Yn−E[Yn+1−Yn|Atn ]− bn∆Wn = anh+ bn∆Wn+
bnb′n

2 [∆W 2
n − h] − anh − bn∆Wn = bnb′n

2 [∆W 2
n − h]. We

need to show that limh→0 E
[

1
h

(
bnb′n

2 [∆W 2
n − h]

)2
]

= 0.

But since b, b′ are bounded, we obtain that

lim
h→0

E

[
1

h

(
bnb
′
n

2
[∆W 2

n − h]

)2
]

≤ lim
h→0

C0hE



∆Wn√

h︸ ︷︷ ︸
N (0,1)


2

− 1


2
 = 0 (4.22)

where C0 is a constant and we used the fact that

E

[((
∆Wn√

h

)2
− 1

)2
]

is a constant independent of h.

Remark 4.22. Strong consistency implies weak consis-
tency, see exercise 4.5 page 94.

4.4 Weak and Strong Convergence

We use the same notations as before, and in particular in the
following two definitions, the time step h satisfies h = T/N ,
where N is the number of time steps to reach a given T
(N is an integer). We will write Nh to better represent this
dependence.
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Definition 4.23 (Strong Convergence). A scheme (Yn)n≥1

is said to be strongly convergent of order γ > 0 at time T if
there exists h0 > 0 and C > 0 independent of h such that for
all h ≤ h0:

E[|X(hNh)− YNh |] ≤ Chγ ( with Nh = [T/h] ∈ N). (4.23)

Definition 4.24 (Weak Convergence). The scheme (Yn)n≥1

is said to be weakly convergent of order β > 0 if there exists
h0 > 0 and C > 0 independent of h such that for all h ≤ h0,
and for all g ∈ C2β+2

p :

|E[g(X(hNh))]− E[g(YNh)]| ≤ Chβ,

where C2β+2
p is the set of functions with at most polynomial

growth1 of class 2β + 2.

Example 4.25. The functions log(·) and sin(·) have at most
polynomial growth. The exponential function does not.

Example 4.26. Let W = (Wt) and B = (Bt) be two in-
dependent Brownian motions and Xt be the exact solution
of the equation dXt = 0 · dt + 1dWt, i.e., Xt = Wt. If we
propose the numerical scheme Yn+1 = Yn + ∆Bn, we obtain
Yn = Btn = Bnh. Although the processes W and B are totally
independent, Yn perfectly respects the distribution of the vari-
able Wtn, so in particular this scheme is weakly convergent
to any order γ ≥ 0. However, it is not strongly convergent to
any order.

Theorem 4.27 (Convergence of Euler-Maruyama and Mil-
stein Schemes). The Euler-Maruyama scheme converges strong-
ly of order 1/2 and weakly of order 1. The Milstein scheme
converges strongly and weakly of order 1.

Proof. This theorem is admitted.

1A function f is said to have at most polynomial growth if there exist
s ∈ N and Cs > 0 such that : |f(x)| ≤ Cs(1 + |x|s), ∀x ∈ R.
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4.5 Integral Form Taylor for ODE

In this part, we consider an ordinary differential equation,
X ′t = a(t,Xt), whose integral form is Xt = X0+

∫ t
0 a(s,Xs)ds.

We write t as an index in the previous equation. For any
sufficiently regular function f , using the equation for X we
obtain:

d

dt
f(Xt) = a(t,Xt)

∂

∂x
f(Xt) (4.24)

Equation (4.24) can also be written as f ′(Xt) = a · fx. This
definition of f allows us to write it in integral form

f(Xt) = f(X0) +

∫ t

0
Lf(Xs)ds, (4.25)

where we have introduced the operator L which, for a func-
tion f , acts by L(f) = a ∂

∂x(f). Let f(x) = x; equation

(4.25) allows us to write Xt = X0 +
∫ t

0 a(Xs)ds because here

L(x) = a ∂
∂x(x) = a.

To simplify our calculations, we set a = a(x), so there
is no explicit dependence on t. Similarly, it is important to
note that (4.25) is valid for any function f , in particular for
f = a. In this case,

a(Xs) = a(X0) +

∫ s

0
La(Xs2)ds2

By reintroducing (4.5) into the definition of Xt, we obtain

Xt = X0 +

∫ t

0

[
a(X0) +

∫ s

0
La(Xs2)ds2

]
ds

= X0 + ta(X0) +

∫ t

0

∫ s

0
La(Xs2)ds2ds.

This process can be repeated as many times as desired,
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which allows us to define the Taylor formula in integral form:

f(Xt) = f(X0) +

∫ t

0
Lf(Xs)ds

= ...

= f(X0) +

n∑
k=1

tk

k!
Lkf(X0)

+

∫ t

0

∫ s

0

∫ s2

0
...

∫ sn

0
Ln+1f(Xsn)dsn...ds. (4.26)

By using (4.26) for a = 1, f(x) = x, we obtain the usual
Taylor formula.

4.6 Itô-Taylor Formulas

In this section, we consider a stochastic differential equation
dXt = a(t,Xt)dt+ b(t,Xt)dWt. The Itô formula,

f(Xt) = f(X0)

+

∫ t

0

{
a(Xs)

∂

∂x
f(Xs) +

1

2
b(Xs)

2 ∂
2

∂x2
f(Xs)

}
ds

+

∫ t

0
b(Xs)

∂

∂x
f(Xs)dWs (4.27)

leads us to introduce two operators:

L0 = a(Xs)
∂

∂x
+

1

2
b(Xs)

2 ∂
2

∂x2
, L1 = b(Xs)

∂

∂x

Equation (4.27) can then be written as:

f(Xt) = f(X0)+

∫ t

0
(L0f)(Xs)ds+

∫ t

0
(L1f)(Xs)dWs (4.28)

We want to find an expression for Xt of order 1. Equa-
tion (4.28) remains true for any function f , especially for
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f(x) = x. We thus have the stochastic differential equation
in integral form:

Xt = X0 +

∫ t

0
a(Xs)ds+

∫ t

0
b(Xs)dWs

By applying (4.28) to the functions a and b, we obtain:

Xt = X0

+

∫ t

0

{
a(X0) +

∫ s

0
(L0a)(Xσ)dσ +

∫ s

0
(L1a)(Xσ)dWσ

}
ds+

+

∫ t

0

{
b(X0) +

∫ s

0
(L0b)(Xσ)dσ +

∫ s

0
(L1b)(Xσ)dWσ

}
dWs.

Finally, we have

Xt = X0 + a(X0)

∫ t

0
ds︸ ︷︷ ︸

O(t)

+ b(X0)

∫ t

0
dWs︸ ︷︷ ︸

O(t1/2)

+ R

We study the remainder R, in order to estimate the order
of its terms.

R =

∫ t

0

∫ s

0
(L0a)(Xσ)dσds︸ ︷︷ ︸
O(t2)

+

∫ t

0

∫ s

0
(L1a)(Xσ)dWσds︸ ︷︷ ︸

O(t3/2)

+

+

∫ t

0

∫ s

0
(L0b)(Xσ)dσdWs︸ ︷︷ ︸
O(t3/2)

+

∫ t

0

∫ s

0
(L1b)(Xσ)dWσdWs︸ ︷︷ ︸

O(t)

We notice that the last term is of order 1. As a reminder, we
have

(L1b)(Xσ) = (L1b)(X0) +

∫ σ

0
(L0L1b)(Xu)du

+

∫ σ

0
(L1L1b)(Xu)dWu (4.29)
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We will keep in (4.29) only the first term, L1b(X0) as we are
only interested in terms of order 1. Finally, we obtain the
Itò-Taylor formula of order 1 with remainder O(t3/2):

Xt = X0 + a(X0)

∫ t

0
ds+ b(X0)

∫ t

0
dWs

+L1b(X0)

∫ t

0

∫ s

0
dWσdWs +R2 (4.30)

Here R2 is a term of order t3/2. We can verify that the
remainder R2 contains only terms of order greater than or
equal to 3/2:

R2 =

∫ t

0

∫ s

0
L0a(Xσ)dσds︸ ︷︷ ︸
O(t2)

+

∫ t

0

∫ s

0
L1a(Xσ)dWσds︸ ︷︷ ︸
O(t3/2)

+

+

∫ t

0

∫ s

0
L0b(Xσ)dσdWs︸ ︷︷ ︸
O(t3/2)

+

∫ t

0

∫ s

0

∫ σ

0
L0L1b(Xu)dudWσdWs︸ ︷︷ ︸

O(t2)

+

+

∫ t

0

∫ s

0

∫ σ

0
L1L1b(Xu)dWudWσdWs︸ ︷︷ ︸

O(t3/2)

We can see that all terms of R2 are of order greater than
1, so we have indeed found an expression for Xt of order 1.

4.7 Application of Itò-Taylor to the Con-
struction of Numerical Schemes

In this section, we can attempt to approximate the solu-
tion of a differential equation through numerical calculation
using the Euler-Maruyama method. We will compute the
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terms appearing in the first-order Ito-Taylor formula in (4.30)
[tn, tn+1]:

Xtn+1 = Xtn + a(Xtn)

∫ tn+1

tn

ds+ b(Xtn)

∫ tn+1

tn

dWs

+ L1b(Xtn)

∫ tn+1

tn

∫ tn+1

tn

dWσdWs +R2

By computing the integrals, we obtain:

Xtn+1 = Xtn+a(Xtn)(tn+1−tn)+b(Xtn)(Wtn+1−Wtn)+O(h),
(4.31)

which allows us to obtain the Euler-Maruyama scheme
that uses the Ito-Taylor expansion with inclusion of all terms
of order 1

2 but only some of the terms of order 1.

Continuing in the Ito-Taylor formula (4.30) with the cal-
culation of L1b(Xtn); for simplification, we denote bn = b(Xtn).
Given the definition of L1, we then obtain

L1b(Xtn) = b(Xtn)
∂

∂x
b(Xtn), (4.32)

and therefore

L1b(Xtn)

∫ tn+1

tn

∫ s

tn

dWσdWs = bnb
′
n

∫ tn+1

tn

(Ws −Wtn)dWs.

(4.33)

Note that
∫ T

0 WsdWs =
W 2
T−T
2 . Integrating the previous

expression, we get:

L1b(Xtn) = bnb
′
n

[
(Ws −Wtn)2 − (s− tn)

2

]tn+1

tn

(4.34)

=
bnb
′
n

2

[
(Wtn+1 −Wtn)2 − (tn+1 − tn)

]
(4.35)

=
bnb
′
n

2
(∆Wn

2 − h), (4.36)
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where ∆Wn = Wtn+1 − Wtn . We then have the following
expression:

Xtn+1 = Xtn + a(Xtn)h+ b(Xtn)(Wtn+1 −Wtn)

+
1

2
bnb
′
n(∆Wn

2 − h) +O(h3/2),

which justifies the expression of the Milstein scheme.

4.8 Application to the Evaluation and
Delta-Hedging of Derivative Prod-
ucts Options, Black & Scholes For-
mulas

We will briefly indicate how numerical schemes are used for
the evaluation and hedging (delta-hedging) of derivative prod-
ucts. This presentation is provided for completeness, and in-
terested readers will find a much more detailed discussion in
[7].

We maintain the previous notations, namely the usual
probabilistic framework, (Wt) a Brownian motion, and St an
underlying asset that satisfies, by assumption, the equation
dSt
St

= µdt + σdWt; we say that we are operating within the
framework of a Black-Scholes model.

To know more 4.28. We do not comment here on
the question of whether or not such a model is actually
verified in reality; more precisely, reality never exactly
matches any model, but some give errors that we are
willing to manage while others do not. This is a more
general discussion that does not currently fall within
the scope of this course but should concern every prac-
titioner.

Let Ct be the price at time t of a derivative product whose
payoff at maturity T ≥ t is given by a measurable random
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variable FT . For technical convenience, we also assume that
E[G2] < ∞. For example, G = (ST − K)+ for a European

call, while G =
(

1
T

∫ T
0 Stdt−K

)
+

for an Asian call. It is

known that there exists a probability Q∗, called the risk-
neutral probability, and W̃ a Q∗-Brownian motion such that

dSt
St

= rdt+ σdW̃t, S(0) = S0 (4.37)

and

Ct = EQ
∗
[
e−r(T−t)G |Ft

]
. (4.38)

Of course, this can also be written as

e−rtCt = EQ∗
[
e−rTCT |Ft

]
, which recalls a martingale

property for the discounting C̃t = e−rtCt of Ct.

To understand why (again, see [7] for a more rigorous
presentation), let’s consider a self-financing portfolio Πt that
finances G, meaning ΠT = G. It will consist of ∆t units
of the underlying asset and the rest in risk-free product. Of
course, due to absence of arbitrage opportunities, it follows
that Ct = Πt for all t. By the self-financing condition, we can
deduce the evolution of Πt: dΠt = ∆tdSt + (Πt − ∆tSt)rdt
or, recalling the definition of dSt:

dΠt = rΠtdt+ ∆tSt[(µ− r)dt+ σdWt].

Now, let’s denote Π̃t = e−rtΠt (discounting of Πt). Then, by
Ito’s formula applied to the function x 7→ e−rtx, we can write
dΠ̃t = ∆tStd[(µ−r)dt+σdWt]. Let’s now change the measure
and find Q∗ equivalent to P such that W̃ = µ−r

σ t + Wt is a

Q∗-Brownian motion. Then we will obtain dΠ̃t = ∆tStσdW̃t;
thus under the measure Q∗ the process Π̃t is an Ito process
without a dt term, hence a martingale, which justifies formula
(4.38).

Of course, this reasoning was under the assumption that
we can find a portfolio Πt that finances G, meaning that
Πt = G. In fact, we can even show this, we will just outline
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the argument. We will keep the same definition of Q∗ (which
has nothing to do with the derivative product, it’s just a
transformation involving the Brownian motion (Wt)).

LetMt be the martingale defined byMt = EQ∗
[
e−rTG |Ft

]
(the fact that (Mt) is a martingale follows from the proper-
ties of conditional expectation and the fact that G has a finite
second moment).

By the martingale representation theorem (which roughly
says that any martingale is an Ito process without a dt term),
there exists Ht such that Mt =

∫ t
0 HsdW̃s or equivalently in

integral form dMt = HtdW̃t = Ht

[µ−r
σ dt+ dWt

]
.

Now we just need to reverse the operations and find that
the portfolio Πt containing Ht

∆tσ
units of the underlying asset

is self-financed and finances G.

To know more 4.29. Note that the existence of such
a portfolio tells us that the risk contained in the deriva-
tive St can be offset (we say ”hedged”) by having a
variable number ∆t of units of the underlying asset (of-
ten ∆t = ∂

∂SCt). Or, in other words, a portfolio that
contains −1 derivative (seller) and +∆t units of the
underlying asset St will be neutral (we say ”delta neu-
tral”), meaning its first-order evolution is determinis-
tic. In particular, if such a portfolio is self-financed,
it will start from 0 and end at 0 regardless of the path
taken by the underlying asset. This leads us into the
realm of ”delta-hedging”, a procedure used by option
sellers who do not want to make directional bets on St
but just pocket their commission and hedge against all
other risks.

From a numerical perspective, to apply (4.38) and com-
pute the price of a derivative product (let’s take a European
call option with strike K as an example, i.e., G = (ST −K)+

and t = 0):

1. simulate a large number M of realizations Smt , m =
1, ...,M of St (which follows the equation (4.37)): this
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can be done either by a direct formula after simulating
W̃ or by numerical schemes such as Euler-Maruyama
or Milstein;

2. calculate the empirical mean 1
M e
−rT ∑M

m=1(SmT −K)+

which will be the option price at time 0.

4.9 Exercises

Throughout the following, we consider a stochastic differen-
tial equation (SDE)

dXt = a(t,Xt)dt+ b(t,Xt)dWt (4.39)

The coefficients a and b that satisfy, at a minimum, the
conditions of the existence theorem of an Itô process, namely:

- a, b are adapted to the filtration At of the process Xt

-
∫ T

0 |as|ds ≤ ∞ a.s.,
∫ T

0 |bs|2ds ≤ ∞ a.s.

Reminder: the time step here is equal to h and we denote
tn = nh. Numerical schemes will provide approximations Yn
of Xtn .
When there is no ambiguity, we denote an = a(tn, Yn), bn =
b(tn, Yn).

Exercise 4.1 (Riemann sums, cf. theorem 4.6, page 73).
Let ∆ : t0 = 0 < t1 < ... < tN = T be a partition of [0, T ].

1. Calculate the L2 limit (if it exists) of the Riemann-type
sum

S1 =
N−1∑
k=0

Btk
(
Btk+1

−Btk
)

; (4.40)

as |∆| → 0.

2. Calculate the L2 limit (if it exists) of the Stratonovich-
type sum

S2 =
N−1∑
k=0

B tk+tk+1
2

(
Btk+1

−Btk
)

; (4.41)
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as |∆| → 0.

Exercise 4.2 (Itô’s formula). For this exercise, (Xt)t≥0 ∈ I2

and we will also admit that (Yt)t≥0 (defined below) is also in
I2.

1. Let Yt = log(Xt). Calculate dYt knowing that dXt =
µXtdt+ σXtdBt.

2. Let dXt = a ·dt+b ·dBt. Calculate dYt where Yt = eXt.

Exercise 4.3 (Stochastic Differential Equations for Some Fi-
nancial Models). Let W = {Wt, t ≥ 0} be a standard Brown-
ian motion.

1. log-normal (Black-Merton-Scholes) model: let µ, σ ∈ R.
Prove, using a result from the course, that the following
SDE:

dSt = µStdt+ σStdWt, S(0) = S0 ∈ R, (4.42)

has a unique solution. Show that this solution is

St = e(µ−σ2/2)t+σWtS0. (4.43)

2. Vasicek model: let α, β, σ ∈ R, α 6= 0, σ > 0. Prove,
using a result from the course, that the following SDE:

drt = α(β − rt)dt+ σdWt, r(0) = r0 ∈ R, (4.44)

has a unique solution. Show that this solution is

rt = r0e
−αt + β(1− e−αt) + σe−αt

∫ t

0
eαsdWs. (4.45)

3. Cox-Ingersoll-Ross (CIR) model: let α, β, σ ∈ R, α 6=
0, σ > 0. Determine whether the result from the course
can be used to prove that the following SDE has a unique
solution:

drt = α(β − rt)dt+ σ
√
|rt|dWt, r(0) = r0 ≥ 0.(4.46)
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Exercise 4.4. (weak consistency) Suppose a is bounded: |a(t, x)| ≤
M ∀t, x.

1/ Show that the following scheme, known as ”weak Euler
Maruyama”:

Yn+1 = Yn + a(tn, Yn)h+ b(tn, Yn)ξn
√
h (4.47)

is weakly consistent. Here ξn are independent random vari-
ables and independent of Atn such that P (ξn = ±1) = 1

2 .

2/ Generalize for other variables ξn.

3/ Is the scheme strongly consistent?

Exercise 4.5. (Strong and Weak Consistency)

1. Show that for any scheme, strong consistency implies
weak consistency.

2. Show that the exact solution satisfies the conditions of
strong consistency (therefore also weak consistency).

Exercise 4.6. (Heun’s Scheme for SDEs) In this exercise,
we consider that in (4.39) the coefficients a and b are inde-
pendent of time, C2 functions, and a, b, and their first and
second derivatives ( a′, a′′, b′, b′′) are also bounded. We study
a formal generalization of Heun’s scheme

Yn+1 = Yn +
1

2

{
a(Yn) + a

(
Yn + a(Yn)h+ b(Yn)∆Wn

)}
h

+
1

2

{
b(Yn) + b

(
Yn + a(Yn)h+ b(Yn)∆Wn

)}
∆Wn (4.48)

Show that this scheme is not strongly consistent for all choices
of a and b, and find for which types of coefficients the scheme
is (sufficient conditions).

Exercise 4.7 (Consistency: Definitions). Show that for equa-
tion (4.39), the definitions of consistency as SDE and as ODE
coincide if b = 0 (a and b will be assumed as smooth as nec-
essary).
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Exercise 4.8 (Order of Strong Convergence for Euler-Maruyama
Limited to 1/2). Provide an example of coefficients a and b
such that the Euler-Maruyama scheme applied to equation
(4.39) has a strong convergence order strictly less than 1.0.

Exercise 4.9. In equation (4.39), we assume a, b Lipschitz,
with growth at most quadratic in X. Show that a strongly con-
sistent scheme starting from X(0) converges strongly. Apply
it to Euler-Maruyama and Milstein schemes and show that
in these cases, the convergence order γ is greater than 0.5.

Exercise 4.10 (Ito-Taylor Expansion for Milstein Scheme).
Explain how the additional term in Milstein compared to Euler-
Maruyama is related to the Ito-Taylor expansion.

Exercise 4.11 (Multi-step SDE Scheme). With the nota-
tions from the course, consider the SDE scheme defined by
Yn+1 = Yn + 3

2anh − 1
2an−1h + bn

√
hξn where ξn are i.i.d

variables with mean m and finite variance σ2, and each ξn
independent of the filtration Atn. We suppose that a, b are
functions independent of time, and a, b, a′, b′, a′′, b′′ bounded.

1. Find m and σ2 such that the scheme is weakly consis-
tent.

2. Is the scheme strongly consistent? Justify.

Exercise 4.12 (SDE Scheme). With the notations from the
course, consider the SDE scheme defined by Yn+1 = Yn +
ha(Yn+1) + bn∆Wn. We suppose that a, b are functions inde-
pendent of time, and a, b, a′, b′, a′′, b′′ bounded.

1. Show that the scheme is well-posed by demonstrating
that the equation Z = Yn + ha(Z) + bn∆Wn admits a
unique solution for sufficiently small h.

2. Calculate E [Yn+1 − Yn| Atn ].

3. Does the scheme satisfy the first condition of strong
consistency? Justify.

4. Is the scheme strongly consistent? Justify.
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4.10 SDE Python lab

Exercise 4.13 (Brownian Motion). 1. Write a program that
calculates a realization of a Brownian motion Wt over
a horizon T = 1 with N = 500, h = T/N . Plot this
realization.

2. Modify the previous program, without adding a ”for”
loop, to calculate M realizations of the Brownian mo-
tion Wt (same parameters). Plot M = 50 such realiza-
tions on the same plot.

3. Using Riemann-Itô sums (4.3), calculate
∫ T

0 WtdWt and
compare it with the exact formula for various values of
h and by averaging over the realizations.

Exercise 4.14 (EM and M Schemes). In this exercise, we
consider the SDE dXt = θ(µ−Xt)dt+σdWt; Xt is called the
Ornstein–Uhlenbeck process. We choose θ = 1.0, µ = 10.0,
σ = 3.0, X0 = 0, T = 1, N = 100.

1. Write a program that simulates Xt using a weak Euler-
Maruyama scheme (see exercise 4.4), and plot the result
for M = 100 scenarios.

2. Modify the previous program to implement the Milstein
scheme (+ plot).

3. Show numerically, by varying h and adjusting M , that
EM converges strongly to order 0.5, M to order 1, and
EM weakly to order 1 (a specific test function should be
chosen).

Exercise 4.15 (European Option Pricing). In this exercise,
we consider the SDE dSt = µStdt + σStdWt (Black-Scholes
model). Here, T = 1.0, N = 255, M = 100 (number of
variations), S0 = 100., µ = 0.1, σ = 0.25, r = 0.05 (risk-free
interest rate), K = 110 (strike price).
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1. Write a program that simulates Wt, St (with an exact
formula); plot St. Calculate the option price and a con-
fidence interval around it.

2. Repeat the above steps, but with an Euler-Maruyama
scheme for calculating St.

In all cases, plot the results.
Hint: for the confidence interval, you can use the following function:

import numpy as np

de f b o o t s t r a p mean c on f i d e n c e i n t e r v a l ( data , num i t e r a t i on s =10000 ,
a lpha =0.05) :

”””
A func t i on to compute the average and a con f i d ence i n t e r v a l

around i t .

Use example
data = np . array ( [ 0 . 2 , 0 . 5 , 0 . 7 , 0 . 8 , 1 . 1 , 1 . 3 , 1 . 5 , 1 . 8 , 2 . 0 ,

2 . 2 ] )
p r i n t ( b o o t s t r a p mean c on f i d e n c e i n t e r v a l ( data ) )

Parameters
==========

data : 1D array o f data
num i t e r a t i on s : number o f b o o t s t r a p i t e r a t i o n s , d e f a u l t i s

10000.
a lpha : con f i d ence l e v e l , t he d e f a u l t i s 0 . 0 5 .

Returns : t he average and a con f i d ence i n t e r v a l around i t as a
t u p l e

=======

”””

n = l en ( data )
means = np . z e ro s ( num i t e r a t i on s )

f o r i in range ( num i t e r a t i on s ) :
means [ i ] = np .mean(np . random . cho i c e ( data , s i z e=n , r e p l a c e=

True ) )

means . s o r t ( )
lower bound = means [ i n t ( num i t e r a t i on s * ( a lpha / 2) ) ]
upper bound = means [ i n t ( num i t e r a t i on s * (1 = a lpha / 2) ) ]
mean est imate = np .mean(means )

re tu rn mean est imate , ( lower bound , upper bound )
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Chapter 5

Some solutions

5.1 Solution for exercises section 2.10

Exercise 5.1. Solution of exercise 2.12.
After ONE time step: EE scheme gives [1.1, 2.23, 2.94] (direct
calculations). For your information (calculations not easily
feasible), the IE scheme gives [1.114, 2.256, 2.946] and the CN
scheme gives [1.107, 2.242, 2.943].
After TWO TIME STEPS the EE scheme gives [1.213, 2.483, 2.886]
(direct calculations); this allows us to identify one of the
schemes. For your information, the IE scheme gives [1.244, 2.543, 2.9]
and the CN scheme gives [1.228, 2.511, 2.893]. To identify,
one must use IE, going backwards!

5.2 ODE lab solutions, section 2.11

Exercise 5.2. Solution of exercise 2.16.

# =*= cod ing : u t f=8 =*=

”””
Created on Mon Mar 8 12 :12 :15 2021

@author : t u r i n i c i
”””

import numpy as np
import ma t p l o t l i b . p y p l o t as p l t
#%ma t p l o t l i b i n l i n e
%ma t p l o t l i b auto

# np . s q r t ( 2 . ) *np . s q r t ( 2 . ) == 2.
# Fa l se ! ! ! !

99
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#parameters
T=10.0 # f i n a l t ime
N=100 # number o f t ime s t e p s
h = T/N #
U0 = 0.0

de f f t x t ( t , x ) :
# d e f i n e the f unc t i on en t e r i n g the ODE x ’( t ) = f ( t , x ( t ) )

r e tu rn (2 .0* np . s q r t ( np . abs ( x ) ) )

d e f E x p l i c i t E u l e r (h ,N, ode func t i on , i n i t i a l v a l u e ) :
”””
Parameters
==========

h : t ime s t e p
N : number o f t ime s t e p s ( i n t e g e r )
i n p u t f u n c t i o n : f un c t i on to i n t e g r a t e
i n i t i a l v a l u e : i n i t i a l v a l u e o f t he ODE

Returns
=======

L i s t o f approximate s o l u t i o n ob ta ined by E x p l i c i t Eu ler scheme
o f s t e p h .

”””

U= [ 0 . 0 ]* (N+1) # c r e a t e s a l i s t on N+1 elements , f i l l e d wi th
va l u e 0

U[0]= i n i t i a l v a l u e

f o r i i in range (N) :
U[ i i +1]=U[ i i ]+h* od e f un c t i on ( i i *h ,U[ i i ] )

r e tu rn (U)

# de f i n e the t ime g r i d
t range = np . l i n s p a c e (0 ,T,num=N+1, endpo in t=True )
# s o l v e by EE the ODE : use EE at any time s t e p and put in a numpy

array : s o l u t i o n
s o l u t i o n = E x p l i c i t E u l e r (h ,N, f t x t ,U0)
s o l u t i o n 2 = E x p l i c i t E u l e r (h ,N, f t x t , np . s q r t ( 2 . ) *np . s q r t ( 2 . ) =2.)

# p l o t t he r e s u l t s
p l t . f i g u r e (1)
#p l t . p l o t ( s o l u t i o n )
p l t . p l o t ( trange , s o l u t i on , ’*r ’ , t range , s o l u t i on2 , ’ ob ’ )
p l t . x l a b e l ( ’ t ime ( t ) ’ )
p l t . y l a b e l ( ’ x ( t ) ’ )
p l t . l e g end ( [ ’ i n f i n i t e p r e c i s i o n s o l u t i o n x ( t ) ’ , ’ f i n i t e p r e c i s i o n

s o l u t i o n x ( t ) ’ ] )

Exercise 5.3. Solution of exercise 2.17.
# =*= cod ing : u t f=8 =*=

”””
Created on Mon Mar 8 14 :30 :03 2021

@author : t u r i n i c i
”””

import numpy as np
import ma t p l o t l i b . p y p l o t as p l t
from s c i p y . i n t e g r a t e import ode in t

%ma t p l o t l i b i n l i n e
#%ma t p l o t l i b auto

#parameters
T=100 # f i n a l t ime
N=250 # number o f t ime s t e p s
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h = T/N #
S0 = 20000
I0=10.
R0=0.

y0 = [ S0 , I0 ,R0 ]
#%%

be ta =1.15
gamma=1./1.
p r i n t ( ’ r ep roduc t i on number=’ , b e t a /gamma)

de f s i r l i s t ( y , t , betaSIR , gammaSIR) :
”””
d e f i n e the SIR func t i on
Parameters
==========

t : t ime
x : l i s t o f components o f dimension d

Returns
=======

a l i s t , v a l u e o f t he f un c t i on

”””
S , I ,R=y
n t o t a l=S+I+R
re turn [=betaSIR*S* I / n t o t a l , betaSIR*S* I / n t o t a l=gammaSIR*I ,

gammaSIR* I ]

d e f s i r a r r a y ( y , t , betaSIR , gammaSIR) :
””” l i k e s i r l i s t bu t r e tu rn an array ”””
re tu rn np . array ( s i r ( y , t , betaSIR , gammaSIR) )

#s i r=s i r a r r a y
s i r= s i r l i s t

# d e f i n e the t ime g r i d
t range = np . l i n s p a c e (0 ,T,num=N+1, endpo in t=True )
s o l u t i o n = ode in t ( s i r , y0 , trange , arg s=(beta , gamma) )

S so l=s o l u t i o n [ : , 0 ]
I s o l=s o l u t i o n [ : , 1 ]
Rsol=s o l u t i o n [ : , 2 ]

p l t . f i g u r e (2 , f i g s i z e =(4 ,2) )
p l t . x l a b e l ( ’ temps ’ )
p l t . p l o t ( trange , Sso l , ’=b ’ , t range , I s o l , ’ : r ’ , t range , Rsol , ’==g ’ )
p l t . l e g end ( [ ’S ’ , ’ I ’ , ’R ’ ] )
p l t . t i g h t l a y o u t ( )
p l t . s a v e f i g ( ’ s i r . pd f ’ )

p l t . f i g u r e (4 , f i g s i z e =(7 .5 ,2 .5 ) )
p l t . s u b p l o t (1 ,3 ,1 )
p l t . x l a b e l ( ’ temps ’ )
p l t . p l o t ( trange , Sso l , ’=b ’ , l i n ew i d t h =4)
p l t . l e g end ( [ ’S ’ , ’ I ’ , ’R ’ ] )
p l t . s u b p l o t (1 ,3 ,2 )
p l t . x l a b e l ( ’ temps ’ )
p l t . p l o t ( trange , I s o l , ’ : r ’ , l i n ew i d t h =4)
p l t . l e g end ( [ ’ I ’ ] , l o c=’ upper r i g h t ’ )
p l t . s u b p l o t (1 ,3 ,3 )
p l t . x l a b e l ( ’ temps ’ )
p l t . p l o t ( trange , Rsol , ’==g ’ , l i n ew i d t h =4)
p l t . l e g end ( [ ’R ’ ] )
p l t . s a v e f i g ( ’ s i r 3 . pd f ’ )
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#%%

#in t h i s second par t we e x p l o r e the order o f e r ro r o f s e v e r a l
schemes

# TODO

# 1/ ob t a in the p r e c i s e v a l u e s o f X( t ) f o r t1=T0=52 and t2=60
# i f t imes v a l u e s are a l r eady in the t range j u s t use :
#X52=[ S so l [ 5 2 ] , I s o l [ 5 2 ] , Rsol [ 5 2 ]

#o th e rw i s e compute again wi th ode in t
t1 =52.0
T0=t1
t2 =60.0
new trange = [ 0 . 0 , t1 , t2 ]
n ew so l u t i on = ode in t ( s i r , y0 , new trange , args=(beta , gamma) , r t o l

=1.e=10)

Xin i t=new so l u t i on [ 1 ]
Xend=new so l u t i on [ 2 ]

d e f f t x t ( t , y ) :
””” d e f i n e the f un c t i on used by the ODE”””
re turn s i r a r r a y ( y , t , beta , gamma)

#t h i s i s t he f un c t i on appear ing in the formula U {n+1}= U n + h \
ph i (Un , . . . )

#E x p l i c i t Eu ler
de f ph i func t ion EE scheme (Un, f t x t , h , tn ) :

r e tu rn f t x t ( tn ,Un)
#Heun
de f ph i func t i on Heun scheme (Un, f t x t , h , tn ) :

r e tu rn 0 .5* ( f t x t ( tn ,Un) +f t x t ( tn+h ,Un + h* f t x t ( tn ,Un) ) )
#RK4
de f ph i func t ion RK4 scheme (Un, f t x t , h , tn ) :

K1 = f t x t ( tn ,Un)
K2 = f t x t ( tn+h /2 . ,Un+h/2.*K1)
K3 = f t x t ( tn+h /2 . ,Un+h/2.*K2)
K4 = f t x t ( tn+h ,Un+h*K3)
re turn (K1+2.*K2+2.*K3+K4) /6 .

# s t a r t i n g from va l ue a t t1 s o l v e numer i ca l l y wi th EE, Heun ,
compare a t t ime T2

# the numerica l and the p r e c i s e v a l u e s f o r d i f f e r e n t v a l u e s o f h

e r r o r l i s t RK4 =[]
e r r o r l i s t H e u n =[]
e r r o r l i s t EE =[]
h l i s t =[0 .05 , 0 .01 , 0 . 1 , 0 . 5 , 1 . , 2 . , 4 . ]

f o r h in h l i s t :
current N=np . in t 64 ( ( t2=t1 ) /h )
#t e s t i f t2=t1 i s r e a l l y a mu l t i p l e o f h : a s s e r t ( ) )
#a s s e r t ( current N*h == t2=t1 )
#use Xin i t as i n i t i a l v a l u e s
current X RK4=Xin i t
current X EE=Xin i t
current X Heun=Xin i t
f o r j j in range ( current N ) :

current X RK4=current X RK4 + \
h*ph i func t ion RK4 scheme ( current X RK4 , f t x t , h , t1+j j *

h )
current X Heun=current X Heun + \

h* ph i func t i on Heun scheme ( current X Heun , f t x t , h , t1+
j j *h )

current X EE=current X EE + \
h* ph i func t ion EE scheme ( current X EE , f t x t , h , t1+j j *h )

#e r r o r l i s t H e u n . append (np . abs ( current X [0]=Xend [ 0 ] ) )
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e r r o r l i s t H e u n . append (np . sum(np . abs ( current X Heun=Xend) ) )
e r r o r l i s t EE . append (np . sum(np . abs ( current X EE=Xend) ) )
e r r o r l i s t RK4 . append (np . sum(np . abs ( current X RK4=Xend) ) )

p l t . f i g u r e (3 , f i g s i z e =(16 ,8) )
p l t . l o g l o g ( h l i s t , e r r o r l i s t EE , ’ o=’ , h l i s t , e r r o r l i s t H eun , ’ o=’ ,

h l i s t , e r r o r l i s t RK4 , ’ o=’ , )
p l t . l e g end ( [ ’ e r ro r EE ’ , ’ e r ro r Heun ’ , ’ e r ro r RK4 ’ ] )

Exercise 5.4. Solution of exercise 2.18
# =*= cod ing : u t f=8 =*=

”””
Created on Mon Mar 8 12 :12 :15 2021

@author : t u r i n i c i : TP no . 1 : ex 2 . 1 7 : s t a b i l i t y o f E x p l i c i t Eu ler

f o r z ’ ( t ) = L * z ( t ) w i th L = i = s q r t (=1)
With no t a t i on z = x+i *y :
x , y=z
x ’ = Re( z ’ ) = Re( i * z ) = Re( i *( x+i y ) )= = y
y ’ = Im( z ’ ) = Im( i * z ) = Im( i *( x+i y ) ) = x
ODE equa t i on i s : [ x , y ] ’ = [=y , x ]

”””

import numpy as np
import ma t p l o t l i b . p y p l o t as p l t
%ma t p l o t l i b i n l i n e
#%ma t p l o t l i b auto

#parameters
T=100.*2*np . p i # f i n a l t ime = 100*2* p i
N=5000 # number o f t ime s t e p s
h = T/N #
U0 = [ 1 . , 0 . ]

d e f f t x t ( t , z ) :
”””
d e f i n e the f unc t i on en t e r i n g the ODE x ’( t ) = f ( t , x ( t ) )
Parameters
==========

t : t ime
z : l i s t o f components o f dimension d

Returns
=======

a l i s t , v a l u e o f t he f un c t i on

”””
x , y=z
re tu rn [=y , x ]

d e f E x p l i c i t E u l e r (h ,N, ode func t i on , i n i t i a l v a l u e ) :
”””
Parameters
==========

h : t ime s t e p
N : number o f t ime s t e p s ( i n t e g e r )
i n p u t f u n c t i o n : f un c t i on to i n t e g r a t e
i n i t i a l v a l u e : i n i t i a l v a l u e o f t he ODE

Returns
=======

L i s t o f approximate s o l u t i o n ob ta ined by E x p l i c i t Eu ler scheme
o f s t e p h .

”””

U= [ i n i t i a l v a l u e ]* (N+1) # c r e a t e s a l i s t on N+1 elements ,
f i l l e d wi th va l u e 0
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f o r i i in range (N) :
U[ i i +1]=[ u i i k+h*xk f o r xk , u i i k in z i p ( o d e f un c t i on ( i i *h ,U

[ i i ] ) , U[ i i ] ) ]
# U[ i i +1]= l i s t ( np . array (U[ i i ] )+h*np . array ( od e f un c t i on ( i i *h

,U[ i i ] ) ) )

r e tu rn (U)

# de f i n e the t ime g r i d
t range = np . l i n s p a c e (0 ,T,num=N+1, endpo in t=True )
# s o l v e by EE the ODE : use EE at any time s t e p and put in a numpy

array : s o l u t i o n
s o l u t i o n = E x p l i c i t E u l e r (h ,N, f t x t ,U0)

s o l u t i o n x = [ z [ 0 ] f o r z in s o l u t i o n ]
s o l u t i o n y = [ z [ 1 ] f o r z in s o l u t i o n ]

# p l o t t he r e s u l t s
p l t . f i g u r e (1)
p l t . s u b p l o t (2 ,1 ,1 )
p l t . p l o t ( trange , s o l u t i on x , ’=r ’ )
p l t . x l a b e l ( ’ t ime ( t ) ’ )
p l t . y l a b e l ( ’ z ’ )
p l t . l e g end ( [ ’ Real ( z ( t ) ) ’ ] )
p l t . s u b p l o t (2 ,1 ,2 )
#p l t . p l o t ( s o l u t i o n )
p l t . p l o t ( trange , s o l u t i ony , ’=b ’ )
p l t . x l a b e l ( ’ t ime ( t ) ’ )
p l t . y l a b e l ( ’ z ’ )
p l t . l e g end ( [ ’ Im( z ( t ) ) ’ ] )

5.3 Backward lab exercises corrections,
section 3.8

Exercise 5.5. Solution of exercise 3.9
# =*= cod ing : u t f=8 =*=

”””
Created on Mon Mar 8 14 :30 :03 2021

@author : t u r i n i c i
”””

import numpy as np
import ma t p l o t l i b . p y p l o t as p l t
from s c i p y . i n t e g r a t e import ode in t
from s c i p y . i n t e r p o l a t e import i n t e r p1d

%ma t p l o t l i b i n l i n e
#%ma t p l o t l i b auto

#parameters
T=150 # f i n a l t ime
N=150 # number o f t ime s t e p s
h = T/N #
S0 = 1. e+6
I0=10.
R0=0.
n t o t a l 0=S0+I0+R0

# cons tan t appear ing in f unc t i on c ( be t a ) = c0/ be ta
c0=1.0
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de f c o s t ( t , b e t a f u n c t i o n ) :
””” implements the c o s t f un c t i on : c ( b e t a ( t ) ) = c0/ be ta ( t )

Inpu t s : b e t a i s a func t i on , t i s a number

”””
re tu rn c0/ b e t a f u n c t i o n ( t )

d e f d co s t ( t , b e t a f u n c t i o n ) :
””” implements the d e r i v a t i v e o f t he c o s t f un c t i on : c ’ ( b e t a ( t ) )

= =c0/ be ta ( t )**2

Inpu t s : b e t a i s a func t i on , t i s a number

”””
re tu rn =c0/ b e t a f u n c t i o n ( t )**2

# t e s t : d co s t ( 1 . , lambda t : 3 . )

y0 = [ S0 , I0 ,R0 ]

b e t a =0.5
gamma=1./3.
p r i n t ( ’ r ep roduc t i on number=’ , b e t a /gamma)

de f s i r l i s t ( y , t , betaSIR , gammaSIR) :
”””
d e f i n e the SIR func t i on
Parameters
==========

t : t ime
x : l i s t o f components o f dimension d

Returns
=======

a l i s t , v a l u e o f t he f un c t i on

”””
S , I ,R=y
n t o t a l=S+I+R
re turn [=betaSIR*S* I / n t o t a l , betaSIR*S* I / n t o t a l=gammaSIR*I ,

gammaSIR* I ]

d e f s i r a r r a y ( y , t , betaSIR , gammaSIR) :
””” l i k e s i r l i s t bu t r e tu rn an array ”””
re tu rn np . array ( s i r ( y , t , betaSIR , gammaSIR) )

#s i r=s i r a r r a y
s i r= s i r l i s t

# d e f i n e the t ime g r i d
t range = np . l i n s p a c e (0 ,T,num=N+1, endpo in t=True )
s o l u t i o n = ode in t ( s i r , y0 , trange , arg s=(beta , gamma) )

S so l=s o l u t i o n [ : , 0 ]
I s o l=s o l u t i o n [ : , 1 ]
Rsol=s o l u t i o n [ : , 2 ]

#con s t r u c t f u n c t i o n s S , I ,R
Sfun = in t e r p1d ( trange , Sso l , f i l l v a l u e=” e x t r a p o l a t e ” )
I fun = in t e r p1d ( trange , I s o l , f i l l v a l u e=” e x t r a p o l a t e ” )
Rfun = in t e r p1d ( trange , Rsol , f i l l v a l u e=” e x t r a p o l a t e ” )

p l t . f i g u r e (2)
p l t . p l o t ( trange , Sso l , t range , I s o l , t range , Rsol )
p l t . l e g end ( [ ’S ’ , ’ I ’ , ’R ’ ] )
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de f s i r l i s t b e t a f u n c t i o n ( y , t , b e t a f un c t i o n , gammaSIR) :
”””
d e f i n e the SIR func t i on
Parameters
==========

t : t ime
x : l i s t o f components o f dimension d

Returns
=======

a l i s t , v a l u e o f t he f un c t i on

”””
S , I ,R=y
n t o t a l=S+I+R
b e t a t=b e t a f u n c t i o n ( t )
r e tu rn [= b e t a t *S* I / n t o t a l , b e t a t *S* I / n t o t a l=gammaSIR*I , gammaSIR

* I ]

d e f a d j o i n t l i s t b e t a f u n c t i o n ( lambdamu , t , b e t a f un c t i o n , gammaSIR ,
S func t ion , I f unc t i on , Rfunct ion ) :
”””
d e f i n e the SIR func t i on
Parameters
==========

t : t ime
x : l i s t o f components o f dimension d

Returns
=======

a l i s t , v a l u e o f t he f un c t i on

”””
lambda t , mu t=lambdamu
b e t a t=b e t a f u n c t i o n ( t )
I t=I f u n c t i o n ( t )
St=S func t i on ( t )
Rt=Rfunct ion ( t )
n t o t a l=St+I t+Rt
re tu rn [ b e t a t * I t *( lambda t=mu t ) / n t o t a l , b e t a t *St *( lambda t=

mu t ) / n t o t a l+gammaSIR*mu t ]

#see how can we use ODEINT to s o l v e backwards :
# example exp (2* t ) : x ’ = 2*x
# tmp=ode in t ( lambda x , t : 2 .* x , 10 .0 , [ 0 , 0 . 5 , 1 . , 1 . 5 , 2 . ] )
# tmp = array ( [ [ 1 0 . ] , [ 2 7 . 18281891 ] , [

7 3 . 8 9056376 ] , [ 2 00 . 85537821 ] , [ 5 45 . 98153731 ] ] )
# we want to s o l v e backward : g i v e va l u e a t t ime 2 =

545.9815003314424
# tmp2=ode in t ( lambda x , t : 2 .* x , 545.98153731 , [ 0 , 0 . 5 , 1 . , 1 . 5 ,

2 . ] [ : : = 1 ] )

b e t a f u n c t i o n =lambda t : b e t a

a d j o i n t s o l u t i o n = ode in t ( a d j o i n t l i s t b e t a f u n c t i o n , [ =1 . , 0 . ] ,
t range [ : : =1 ] ,

arg s=( b e t a f unc t i on , gamma , Sfun , I fun , Rfun )
)

lambdaso l=a d j o i n t s o l u t i o n [ : , 0 ] [ : : = 1 ]#in order to correspond to
t range not to t range [ : : =1 ]

musol=a d j o i n t s o l u t i o n [ : , 1 ] [ : : = 1 ]

#compute the g r ad i en t

gradientST = Sso l* I s o l *( lambdaso l=musol )
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dco s t a r ray =[ dco s t ( t , b e t a f u n c t i o n ) f o r t in t range ]
g r a d i en t = dcos tarray=gradientST / n t o t a l 0
p l t . f i g u r e (6)
p l t . s u b p l o t (3 ,1 ,1 )
p l t . p l o t ( trange , gradientST )
p l t . s u b p l o t (3 ,1 ,2 )
p l t . p l o t ( trange , g r a d i en t )
p l t . s u b p l o t (3 ,1 ,3 )
p l t . p l o t ( trange , d co s t a r ray )

p l t . f i g u r e (7)
p l t . p l o t ( trange , g r a d i en t )
p l t . f i g u r e (8)
p l t . p l o t ( trange ,=gradientST )

5.4 SDE exercises solutions, section 4.9

Reminder: in the calculation of conditional expectations,
the following properties are useful (A is a tribe):

a/ E(XZ|A) = ZE(X|A) if Z is measurable with respect
to A

b/ E(X|A) = EX if X is independent of A
c/ upper bound: E(X|A) ≤ E(|X||A)

Exercises 4.1 to 4.3 concern stochastic calculus. They are
corrected in the book [7, Chapter 2], a PDF version of which
is available online (PDF address: see ”Bibliography” section
on page 122).

Exo. 4.4 We verify the two properties in the definition of
weak consistency.

E

(
Yn+1 − Yn

h

∣∣∣∣Atn)− an = E

(
anh+ bn

√
hξn

h

∣∣∣∣∣Atn
)
− an

= an +
bn√
h
Eξn − an = 0,

where we used the fact that an and bn are measurable with
respect to Atn , also the fact that ξn is independent of Atn ,
and Eξn = 0. Thus,

E
∣∣∣∣E ( Yn+1 − Yn

h

∣∣∣∣Atn)− an∣∣∣∣2 = E0 = 0, (5.1)
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which gives the first bound in the definition of consistency,
with c(h) = 0. For the second condition:

E
(

(Yn+1 − Yn)2

h

∣∣∣∣Atn) = E

(
(anh+ bn

√
hξn)2

h

∣∣∣∣∣Atn
)

= ha2
n + 2anbn

√
hEξn + b2nEξ2

n = ha2
n + b2n.

We again used Eξn = 0 but also Eξ2
n = 1 (and of course,

the independence of ξn and the measurability of a and b with
respect to Atn). We conclude that

E
∣∣∣∣E ((Yn+1 − Yn)2

h

∣∣∣∣Atn)− b2n∣∣∣∣2 = E(ha2
n)2 ≤ h2M. (5.2)

But Mh2 → 0 for h → 0, which completes the demon-
stration of weak consistency (with c(h) = Mh2 in both esti-
mates).

2/ We notice that any sequence of independent random
variables ξn with mean 0 and variance 1, independent of Atn ,
yields the same result.

3/ It cannot be, because the second condition in the def-
inition of strong consistency would not be satisfied (indeed,
the variables ξn have no relation with ∆Wn, thus in particular
cannot compensate them during the calculation, and we are
left with a term that does not tend towards zero as h→ 0).
Exo. 4.6

The calculations of this exercise are not quite similar to
those of the previous application for the following reason:

a
(
Yn + anh + bn∆Wn

)
is neither independent of Atn nor

measurable with respect to Atn ; indeed, the function a mixes
∆Wn on one hand and Yn,an, and bn on the other hand, so,

a
(
Yn + anh+ bn∆Wn

)
is not independent of Atn due to the

presence of Yn,an, and bn and is not measurable with respect
to Atn due to the presence of ∆Wn. We need then to replace
the exact calculation of the conditional expectation, which we
could do before, by an approximate calculation using Taylor
formulas.
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We first note that, with the notations an = a(Yn), bn =
b(Yn), a′n = a′(Yn), b′n = b′(Yn), a Taylor formula to order 2
gives us:

a
(
Yn + anh + bn∆Wn

)
= an + a′n ·

(
anh + bn∆Wn

)
+

a′′(αny )

2 ·
(
anh+ bn∆Wn

)2
for some point αny .

Similarly:

b
(
Yn+anh+bn∆Wn

)
= bn+b′n ·

(
anh+bn∆Wn

)
+
b′′(βny )

2 ·(
anh+ bn∆Wn

)2
for some point βny .

Remark: e.g., a′n is measurable with respect to Atn because
it is a function, i.e., a′(·) applied to a variable Yn which is
measurable with respect to Atn .

Now, we just need to perform the calculations in the same
way as before. We only omit the initial immediate calcula-
tion which uses independence and measurability with respect
to Atn ; the reader is invited to redo it if necessary.

E

(
Yn+1 − Yn

h

∣∣∣∣Atn)− an
= an +

ana
′
nh+ E

(
a′′(αny )

2

(
anh+ bn∆Wn

)2
|Atn

)
2

+
bnb
′
n

2h
E∆2

n +
E
(
b′′(βny )

2 ·
(
anh+ bn∆Wn

)2
∆Wn|Atn

)
2h

− an.

At this point, under the assumptions of the exercise, we can
estimate

E

(
Yn+1 − Yn

h

∣∣∣∣Atn)− an =
b′nbn

2
+O(

√
h) (5.3)

As an example, let’s detail the treatment of the term

E
(
b′′(βny ) ·

(
anh+ bn∆Wn

)2
∆|Atn

)
4h

.

First, we need to remember that βny depends on ∆Wn as well,
so b′′(βny ) might not be measurable with respect to Atn (nor



110 CHAPTER 5. SOME SOLUTIONS

necessarily independent of Atn). So we will only have upper
bounds:

E
(
b′′(βny ) ·

(
anh+ bn∆Wn

)2
∆Wn|Atn

)
2h

≤M2

E
((
anh+ bn∆Wn

)2
|∆Wn|

∣∣∣Atn)
2h

≤ C(h
√
h+
√
h

2
+
√
h

3
) ≤ C ′h1/2

with constants C,C ′ independent of h. Returning to (5.3),
since bnb

′
n doesn’t necessarily tend to be small for h→ 0 (in

fact, it doesn’t even depend on h), the scheme is not generally
consistent. A similar calculation shows that

E
(1

h

∣∣∣Yn+1 − Yn − E(Yn+1 − Yn|Atn)− bn∆Wn

∣∣∣2) = O(h).

(5.4)
In conclusion, the scheme is strongly (thus weakly) consistent
if and only if bb′ = 0, i.e., b is constant.
Exo. 4.7 We assume a to be as regular as desired, for exam-
ple, C∞ bounded with all its derivatives bounded. In the case
where b = 0, (4.39) is completely deterministic and becomes
an ODE. The Itô process Xt solution of (4.39) no longer
depends on the randomness ω. It is therefore relevant to
compare the notion of consistency for ODEs with the two
notions of consistency for SDEs. Thus, if we take a scheme
(Yn)n∈N that approximates the solution to (4.39) and start
from a deterministic initial condition Y0 = X0 ∈ R, it is not
necessary to make it dependent on ∆Wn and we can write
it in the form Yn+1 = Yn + hΦ(tn, Yn, an, h), an = a(tn, Yn),
∆Wn = Wtn+1 −Wtn , with Φ as regular as desired (for ex-
ample, C∞ bounded with all its derivatives bounded). Since
everything is deterministic here, the quantity Φ(tn, Yn, an, h)
is independent of Atn and we obtain

E (Yn+1 − Yn|Atn) = hE (Φ(tn, Yn, an, h)|Atn)

= hE(Φ(tn, Yn, an, h))

= hΦ(tn, Yn, an, h).
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So, the first weak consistency condition becomes

lim
h→0+

E

(∣∣∣∣hΦ(tn, Yn, an, h)

h
− an

∣∣∣∣2
)

= 0,

i.e., since everything is deterministic,

lim
h→0+

|Φ(tn, Yn, an, h)− an|2 = 0,

i.e.
lim
h→0+

an − Φ(tn, Yn, an, h) = 0.

Now
an = a(tn, Yn) = X̃ ′(tn),

where X̃ ′ is the unique solution to (4.39) satisfying X̃(tn) =
Yn. Furthermore, as X̃ ′ is C∞ and X̃(tn) = Yn, we have in
particular that

X̃(tn+1)− Yn
h

→ X̃ ′(tn) = an as h→ 0+.

Thus,

lim
h→0+

an − Φ(tn, Yn, an, h) = 0

⇔ lim
h→0+

(
an −

X̃(tn+1)− Yn
h

)

+

(
X̃(tn+1)− Yn

h
− Φ(tn, Yn, an, h)

)
= 0

⇔ lim
h→0+

X̃(tn+1)− Yn
h

− Φ(tn, Yn, an, h) = 0,

which indeed means that the local truncation error given in
(2.9) tends to 0 as h→ 0+, given Remark 2.8. Similarly,

E

(
(Yn+1 − Yn)2

h
|Atn

)
= h2E

(
(Φ(tn, Yn, an, h))2|Atn

)
= h2E(Φ(tn, Yn, an, h)2)

= h2Φ(tn, Yn, an, h)2.
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Furthermore, bn = 0 here. Thus, the weak consistency con-
dition (W2) becomes

lim
h→0+

E

(∣∣∣∣h2Φ(tn, Yn, an, h)2

h

∣∣∣∣2
)

= 0,

i.e., since everything is deterministic,

lim
h→0+

∣∣hΦ(tn, Yn, an, h)2
∣∣2 = 0,

i.e.
lim
h→0+

h2Φ(tn, Yn, an, h)4 = 0,

which is automatically satisfied since we assumed Φ to be
bounded.

For strong consistency, the first condition is identical to
the first weak consistency condition. As for the second con-
dition of strong consistency, we notice that here, by a calcu-
lation already done,

Yn+1 − Yn − E (Yn+1 − Yn|Atn) = hE(Φ(tn, Yn, an, h)).

Thus, since bn = 0, condition F2 is rewritten here as

lim
h→0+

E
(

1

h
|hΦ(tn, Yn, an, h)|2

)
= 0,

i.e., since everything is deterministic,

lim
h→0+

1

h
|hΦ(tn, Yn, an, h)|2 = 0,

i.e.
lim
h→0+

hΦ(tn, Yn, an, h)2 = 0,

which is automatically satisfied since we assumed Φ to be
bounded.

Thus, in this case, the weak and strong consistency con-
ditions are identical to each other and identical to the consis-
tency condition for ODEs, which is that the local truncation
error given in (2.9) tends to 0.
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Exo. 4.8 If we were in the case of an ODE (i.e. b = 0), we
know that the Euler-Maruyama scheme is equivalent to the
usual explicit Euler scheme and that the convergence order is
necessarily 1. Thus, to find a suitable example, it is necessary
to take b 6= 0. The simplest case would be to take b = 1
and a = 0, but in this case, the approximate solution would
unfortunately be equal to the exact solution (check it). So,
we need to look for something a bit more complicated. Let’s
take another simple case (there are surely infinitely many
others that work, perhaps in a more elementary way). Let’s
set

f(t, x) = tx.

f is C∞ in (t, x). Then, by the Itô formula,

df(t,Wt) =
∂f

∂t
(t,Wt)dt+

∂f

∂x
(t,Wt)dWt

+
1

2

∂2f

∂x2
(t,Wt)dt = Wtdt+ tdWt,

which can be rewritten as

d(tWt −
∫ s

0
Wsds) = tdWt.

Thus, if we define Xt = tWt −
∫ s

0 Wsds, Wt is a solution of

dXt = tdWt, X0 = 0.

Let’s see what happens when applying the Euler-Maruyama
scheme to this SDE, starting from Y0 = 0, over the time in-
terval [0, 1] (i.e. T = 1 here, and thus N = 1

h):

Yn+1 = Yn + tn
(
Wtn+1 −Wtn

)
= Yn + nh

(
Wtn+1 −Wtn

)
.

It’s very easy to solve this recurrence and deduce that

Yn = Y0 + h
n∑
i=1

i
(
Wti −Wti−1

)
= h

n∑
i=1

i
(
Wti −Wti−1

)
.
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Especially,

YN = h
N∑
i=1

i
(
Wti −Wti−1

)
= h

N−1∑
i=1

i
(
Wti −Wti−1

)
+W1−W1−h.

Since we are interested in strong convergence, we look at the
error at N given by the formula

eN (h) = E(|YN −X1|)

= E(|W1−h −
∫ 1

0
Wsds− h

N−1∑
i=1

i
(
Wti −Wti−1

)
|).

Now, it remains to estimate this quantity. We know that
Wti−Wti−1 are all pairwise independent and follow a centered
Gaussian law with variance h. Thus, the random variables
i
(
Wti −Wti−1

)
are also all pairwise independent and follow

a centered Gaussian law with variance i2h. Their sum

N−1∑
i=1

i
(
Wti −Wti−1

)
is therefore again a centered Gaussian with variance

σ2 = h

N−1∑
i=1

i2 = h
(N −N)(N + 1)(2N)− 11)

6
=

(1− h)(2− h)

6h2
.

Thus, the random variable

|
N−1∑
i=1

i
(
Wti −Wti−1

)
|

is a ”folded normal law” whose mean is given by

σ

√
2

π
=

√
(1− h)(2− h)

3πh2
.

Using the triangle inequality, we get

eN (h) > E(|W1−h −
∫ 1

0
Wsds|)−

√
(1 + h)(2 + h)

3
πh2.
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A Taylor expansion gives√
(1− h)(2− h)

3πh2
=

√
2

3π

h
− 1

2

√
3

2π
+O(h).

We still need to estimate E(|W1−h −
∫ 1

0 Wsds|).
Thus, we deduce that

eN (h) > C ′(T )
√
h,

for a constant C ′(T ) > 0 depending on T whose value
doesn’t matter. Obviously, this prohibits having eN (h) 6
C ′′h for some C ′′ > 0 (simply because C ′(t)

√
h 6 C ′′h is

necessarily false for h sufficiently small by dividing each side
by
√
h), and thus the scheme is not of order 1 in this case.

In fact, the scheme is at best of order 1/2. Since it was
admitted in class that the Euler-Maruyama scheme was of
strong convergence order at least 1/2, we cannot improve the√
h in the previous inequality.

Exo. 4.10
With the notations from the course, we are interested in

the term

I = L1b(Xn)

∫ tn+h

tn

∫ s

tn

dWσdWs

of the Ito-Taylor expansion, which dominates all the remain-
der terms placed in R2 as shown in class. We recall that in
the case where b does not depend on t, L1 is given by

L1 : b 7→ b b′.

Moreover, the additional term in the Milstein scheme com-
pared to the Euler-Maruyama scheme is given by

J =
1

2
b(Xn)b′(Xn)

(
(∆Wn)2 − h

)
.

Thus, if we want to demonstrate that I = J , it suffices to
demonstrate that∫ tn+h

tn

∫ s

tn

dWσdWs =
1

2

(
(∆Wn)2 − h

)
.
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To do this, we start by noticing that∫ s

tn

dWσ = Ws −Wtn ,

so that∫ tn+h

tn

∫ s

tn

dWσdWs =

∫ tn+h

tn

WsdWs −Wtn

∫ tn+h

tn

dWs

=

∫ tn+h

tn

WsdWs −Wtn (Wtn+h −Wtn) .

Now, we use the Ito formula to compute the quantity d(W 2
t ).

We set g(t, x) = x2, so that d(W 2
t ) = d(g(t, Bt)). g is C∞

and
∂g

∂t
(t, x) = 0,

∂g

∂x
(t, x) = 2x,

∂2g

∂x2
(t, x) = 2.

We then obtain

d(W 2
t ) =

∂g

∂t
(Wt)dt+

∂g

∂x
(Wt)dWt+

1

2

∂2g

∂x2
(Wt)dt = 2WtdWt+dt.

By integrating between tn and tn + h, we get

W 2
tn+h −W 2

tn = 2

∫ tn+h

tn

WsdWs + (tn + h− tn).

Taking into account that tn + h− tn = h, we deduce that∫ tn+h

tn

WsdWs =
1

2

(
−h+W 2

s −W 2
tn

)
.

Thus, putting together the previous calculations, we deduce
that∫ tn+h

tn

∫ s

tn

dWσdWs =
1

2

(
−h+W 2

tn+h −W 2
tn

)
−Wtn (Wtn+h −Wtn)

=
1

2

(
h+W 2

tn+h −W 2
tn − 2WtnWtn+h + 2W 2

tn

)
=

1

2

(
−h+W 2

tn+h +W 2
tn − 2WtnWtn+h

)
=

1

2

(
−h+ (Wtn+h −Wtn)2

)
,

which was the desired result since by definition, ∆Wn =
Wtn+h −Wtn .



5.5. SDE LAB 117

5.5 Solution of SDE exercises section 4.10

Exercise 5.6. Solution of exercise 4.13

# =*= cod ing : u t f=8 =*=

”””
Created on Mon Apr 12 14 :51 :49 2021

@author : t u r i n i c i
”””
import numpy as np
import ma t p l o t l i b . p y p l o t as p l t

#TODO implement a brownian motion

#f i r s t i dea : use the p r o p e r t i e s o f t he Wt:
T=1.0
N=255
M=10#number o f s c ena r i o s
d t= T/N
W0=0#standard brownian motion
t range=np . l i n s p a c e (0 ,T,N+1, endpo in t=True )
# We know t h a t Wt i s a normal va l u e o f var iance t
W1=np . s q r t ( t range )*np . random . randn (N, 1 )
p l t . f i g u r e (1)
p l t . s u b p l o t (1 ,2 ,1 )
p l t . p l o t ( t range [ 1 : ] ,W1)
#not working because the covar iance i s a lways zero . . . and not min

( s , t )
#good implementat ion : wi th increments

#another idea : use the cummulative increments p rope r t y o f B.M.
dW=np . s q r t ( d t )*np . random . randn (N,M)
W=np . z e ro s ( (N+1,M) )
W[0 , : ]=W0
W[ 1 : , : ]=W0+np . cumsum(dW,0 )

p l t . f i g u r e (2)
p l t . p l o t ( trange ,W)

#compute \ i n t 0 ˆT W t d W t : us ing the Riemann=I t o sums
# in f a c t we compute sum n W( t n ) * ( increment between $ t n$ and

$ t n+h$ )
# a l s o compute i n t e g r a l minus W Tˆ2/2 and p l o t f o r a l l

s c ena r i o s

int WdW=np . z e r o s l i k e (W)
int WdW [0 , : ]=0 . 0

f o r i i in range (N) :
int WdW [ i i +1 , : ] =int WdW [ i i , : ]+ W[ i i , : ] *dW[ i i , : ]

p l t . f i g u r e (3 , f i g s i z e =(15 ,5) )
p l t . s u b p l o t (1 ,3 ,1 )
p l t . p l o t ( trange , int WdW)
p l t . t i t l e ( ’ $ t \mapsto \ i n t 0 ˆ t W u d W u$ ’ )
p l t . x l a b e l ( ’ t ’ )
p l t . s u b p l o t (1 ,3 ,2 )
p l t . p l o t ( trange ,W**2/2=int WdW)
p l t . t i t l e ( ’ $ t \mapsto W tˆ2/2=\ i n t 0 ˆ t W u d W u$ ’ )
p l t . x l a b e l ( ’ t ’ )
p l t . s u b p l o t (1 ,3 ,3 )
p l t . p l o t ( trange ,W**2/2=int WdW= t range [ : , None ]**2/2)
p l t . t i t l e ( ’ $ t \mapsto W tˆ2/2= t /2=\ i n t 0 ˆ t W u d W u$ ’ )
p l t . x l a b e l ( ’ t ’ )
p l t . t i g h t l a y o u t ( )
p l t . show ()
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Exercise 5.7. Solution of exercises 4.14 and 4.15

”””
@author : Gabre l Tur in i c i
”””
import numpy as np
import ma t p l o t l i b . p y p l o t as p l t
from s c i p y . s t a t s import norm

#implementat ion o f t he Black=Scho l e s formula
de f b l s p r i c e ( Price , S t r i k e , Rate , TimeToMaturity , V o l a t i l i t y ,

DividendRate=0) :
”””
Computes p r i c e o f op t i on wi th a n a l y t i c formula .
inpu t :

S : Pr ice = Current p r i c e o f t he unde r l y i n g a s s e t .

S t r i k e : S t r i k e = S t r i k e ( i . e . , e x e r c i s e ) p r i c e o f t he op t i on
.

Rate : Rate = Annual i zed con t i nuou s l y compounded r i s k=f r e e
r a t e o f r e tu rn over

the l i f e o f t he opt ion , e xp r e s s ed as a p o s i t i v e dec imal
number .

TimeToMaturity : Time = Time to e x p i r a t i o n o f t he opt ion ,
e xp r e s s ed in years .

V o l a t i l i t y : v o l a t i l i t y
DividendRate = cont inuous d i v i d end ra t e

ou tpu t : p r i c e o f a c a l l and o f a put ( t u p l e )
”””

i f TimeToMaturity <= 1e=6: # the op t i on a l r eady e xp i r e d
c a l l = np .max( Price=S t r i k e , 0 )
put = np .max( S t r i k e=Price , 0 )
r e tu rn c a l l , put

d1 = np . l o g ( Pr ice / S t r i k e )+(Rate=DividendRate + V o l a t i l i t y
**2/2.0)*TimeToMaturity ;

d1 = d1 /( V o l a t i l i t y * np . s q r t ( TimeToMaturity ) )
d2 = d1=( V o l a t i l i t y *np . s q r t ( TimeToMaturity ) )

c a l l = Price * np . exp(=DividendRate*TimeToMaturity ) * \
norm . cd f ( d1 )=S t r i k e * np . exp(=Rate*TimeToMaturity ) * norm .

cd f ( d2 )
put = S t r i k e * np . exp(=Rate*TimeToMaturity ) * norm . cd f (=d2 )\

=Price* np . exp(=DividendRate*TimeToMaturity ) * norm . cd f (=
d1 )

re tu rn c a l l , put

T=1.0
N=255
M=300#number o f s c ena r i o s
d t= T/N
W0=0#standard brownian motion
t range=np . l i n s p a c e (0 ,T,N+1, endpo in t=True )

dW=np . s q r t ( d t )*np . random . randn (N,M)
W=np . z e ro s ( (N+1,M) )
W[0 , : ]=W0
W[ 1 : , : ]=W0+np . cumsum(dW,0 )

p l t . f i g u r e (2)
p l t . p l o t ( trange ,W)
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S0=100.
mu=0.1
sigma=0.25
t au x r =0.05

#compute S t wi th dS t = mu S t d t + sigma S t d W t
St=np . z e r o s l i k e (W)
St [ 0 , : ]= S0

f o r i i in range (N) :
St [ i i +1 , : ] =St [ i i , : ]+ mu*St [ i i , : ] * dt + sigma*St [ i i , : ] *dW[ i i , : ]

p l t . f i g u r e (3)
p l t . p l o t ( trange , St )
p l t . t i t l e ( ’ $S t$ ’ )

#compute the Monte Carlo p r i c e o f an op t i on
# s o l v e St in r i s k=neu t r a l p r o b a b i l i t y , denote rn S t

#compute rn S t wi th
# d rn S t = r rn S t d t + sigma rn S t d W t
rn S t=np . z e r o s l i k e (W)
rn S t [ 0 , : ]= S0

f o r i i in range (N) :
rn S t [ i i +1 , : ] =rn S t [ i i , : ]+ t au x r * rn S t [ i i , : ] * dt \

+ sigma* rn S t [ i i , : ] *dW[ i i , : ]

#compute the p r i c e o f t he c a l l
K=110
p r i x c a l l , = b l s p r i c e (S0 ,K, taux r ,T, sigma )
prixMC=np . exp(= t a u x r *T)*np .mean(np .maximum( rn S t [=1 ,:]=K,0 ) )

p r i n t ( ” p r i x Monte Carlo=” , prixMC)

p l t . s u b p l o t (2 ,2 ,4 )
p l t . h i s t ( np . exp(= t a u x r *T) *

np .maximum( rn S t [=1 ,:]=K,0 )=p r i x c a l l ,50)
p l t . t i t l e ( ’ h i s t du p r i x Monte Carlo ’ )

erreur MC =prixMC=p r i x c a l l
#p l t . s a v e f i g (” eu ler maruyama monte car lo . j p g ”)
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