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Chapter 1

Motivations and
Examples:
Epidemiology, Finance,
deep learning

The object of this book is on one hand the presentation of
numerical algorithms for finding the solutions to time de-
pending problems and on the other hand the computation of
derivatives in a computational graph ; we will see that the
two share some important features and in particular we will
apply these techniques to the control of evolution equations
and also to techniques in statistical (deep) learning. We begin
with some examples of applications.

1.1 Ordinary Differential Equations (ODE)

An important model in epidemiological modeling is the SIR
model; the initials denote S for the group of ’susceptible’
individuals, I for the group of infected individuals, and R for
the group of those recovered, see Figure for a graphical
representation.

After a derivation (which will be presented later in Section
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8 CHAPTER 1. EXAMPLES
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Figure 1.1: Schematic representation of the SIR model in
equation (|1.1)).
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Figure 1.2: Typical evolution of the system in Equation (1.1));
data taken from [5].

, we obtain the system of equations, called the SIR model

ds _ _BSI

dt SIN

al _ B31 41 (1.1)
‘il—]f:fyl.

We assume S(0) = Sy # 0, I(0) =1Ip >0, R(0) = Ry >0,
So+ Ip+ Ry = N, N is the total population. Here, 3, ~
are parameters of the model. A typical evolution is given in

Figure 1.2

In reality, the model needs to be adapted, as real data
is not always compatible with simple models, see Figure
Therefore, we move beyond the domain of models with an-
alytical solutions and must find accurate numerical approxi-
mations of their solutions.
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dS/dt = —rS(t)I(t) — r,S(t) L,(t)
dE/dt = rS(t ) (t) — bE(t)
dI/dt = bE(t) — al(t)

\ . dR/dt = aI(t)
|||‘ || ' ,“I dl,/dt = rpS(t)I,(t) — aply(t)
m\ || il | ¢80/t = apLo(®)-

Number of cases

Figure 1.3: Actual evolution of the number of infected indi-
viduals; image taken from [5]. To accurately reproduce real
data, it is necessary to use a model like the one on the right.

1.2 Stochastic Differential Equations (SDE)

In financial applications (calculations for derivative products
in different scenarios) or in physics (path integrals, etc.),
there is a need to handle quantities that evolve over time
and also contain an element of uncertainty. For instance, the
yield S”Ait of a financial asset contains a predictable part
and another random part, which can be modeled, like in the
Black-Scholes model, as a normal variable N (uAt, UzAt)H
The following stochastic differential equation (SDE) is ob-
tained (see [7] for details):

dSt = ,uStdt + O'Stth. (12)
An illustration of solution scenarios for (1.2)) is provided in

Figure

Reminder: derivative products are financial instruments
whose value depends (according to a pre-established contract)
on an underlying asset. Example: a KEuropean call option on
Sy with a final value of (S7 — K)4. However, the calculation
of the value before expiration is unknown. Models need to
be imposed, and quantities such as:

E%e™T0(Sr — K)4 [(Su)use], (1.3)

'We do not discuss the justification of the validity of this model here;
for real-life applications, this justification must be carefully validated!!
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Figure 1.4: Solution scenarios for (|1.2)).

need to be calculated. As a reminder, S; follows an SDE; the
goal is to calculate solutions, study the accuracy of numeri-
cal calculations, determine if precise scenario calculations are
desired (strong convergence) or only averages (weak conver-
gence), etc...

1.3 Computating the derivativ in a com-
putational graph and control of evo-
lution equations

The goal is to influence the evolution of a system by acting
on various parameters called ”controls”. The same approach
helps us study the sensitivity of a result (obtained from solv-
ing an evolution equation) with respect to input parameters;
an example can be constructed from section if we want
to khow how S(o0) of depends on f.

In general, whenever a result is obtained using sequential
calculations on a computational graph, the derivative of the
result with respect to the inputs can be calculated. This is
called backpropagation; in control theory, this gives rise to
”adjoint states”.

Example (adapted from [4], also see [2, chap 6.5]): f =
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5-(x+y-z). The graph has inputs z, y, z, and output
f = f(z,y,2). To calculate O, f, Oyf, 0.f, write it as a
computational graph (direct or ”forward” calculation):

U=y Xz
v=x+u
f=5xw

Let x = 1, y = 2, z = 3; here are the relations obtained by
elementary derivation of each calculation (adjoint or ”back-
ward” calculation):

Of=5

Oz f =0f X Opv=0,f =5

Ouf =0yf x O =0,f=5

Oyf = Ouf x Oyu =5z =15

0,f = Ouf X 0,u = 5y = 10.

We will study the relationship between the derivative and
the computational graph and observe the emergence of an
auxiliary variable called the adjoint state. It is crucial for
the formalization of the calculation and allows the treatment
of complex situations (cf. Figure for the ”Inception” net-

work [0]).

Figure 1.5: ”Inception” network architecture [6]. Each cell
represents a multi-variable calculation such as matrix-vector
multiplication followed by a non-linear operation like taking
the positive part on each component.
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Chapter 2

Ordinary Differential
Equations (ODE)

Let I be an open interval included in R;. Consider the fol-
lowing ordinary differential equation (ODE):

dX

E = f(t7X(t))7 X<t0) = X07 (2'1)

with the integral form

X(t) = X(to) + /f(s,X(s))ds. (2.2)

2.1 Existence and Uniqueness of the So-
lution

To show the existence and uniqueness of the solution to the
previous ODE, we use the following two theorems:

Theorem 2.1 (Local Lipschitz variant of Cauchy-Lipschitz).
Let f: I xR — R be a locally Lipschitz continuous function
at Xo € R, tg € I. In other words, there exist two balls
Bx(Xo, Ry), Bi(to, Rt) and a constant L > 0 such that Vt €

13



14 CHAPTER 2. ODE

Bt(to,Rt), VX1,X5 € BI(XQ,RQC):
|f(t, X1) — f(t, X2)| < L| X1 — Xl

Then there ezists € > 0 such that the Cauchy problem (2.1))
has a unique local solution: X (t) : (to —e,to+¢) C I — R.
Moreover, X(-) is a C* function.

Theorem 2.2 (Global Lipschitz variant of Cauchy-Lipschitz).
Under the same assumptions as in Theorem , if L is the
same for all Ry (radius of the ball) and initial condition X,
then a global solution exists and is unique.

Remark 2.3. Global existence also holds if we can find a
continuous function o : R — Ry such that

|f(t, X1) — f(t, X2)| < a(t)| X1 — Xaf.

This allows L to depend on time.

Example 2.4 (linear function). Let f(t, X) =rX withr € R
constant. Then |f(t,X1) — f(t, X2)| = |r| - | X1 — Xa|, so we
obtain global existence with L = |r|.

Example 2.5 (non-linear function that blows up). Let f(t, X) =
<5 An immediate calculation gives |f(t, X1) — f(t, X2)| =
WEM | X1 — Xa|, so we obtain local existence for L =
SUP X, X,cV m in an open neighbourhood V of any
point Xo # 3 (such that 3 ¢ V). However, as M’w
is not bounded around Xo = 3, the global existence theorem
1s not applicable at Xy = 3.

2.2 Numerical Methods

2.2.1 Important notations

If the solution to the Cauchy problem exists, it is unique
(cf. Theorem [2.1). To numerically find the solution, it is
approximated using different methods. The approximation
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is done, for example, on [0,7] with N points. We introduce
some important notations used throughout this chapter :

1. the equation to solve is (2.1));

2. h=T/N is called the "time step”; we denote t,, = n-h,
Vn < N;

3. X,, = X(ty) is the exact solution; in general we do not
have a analytic formula so X,, will remain unknown;

4. U, will be an approximation of X,; this is the main
object that we search

D. fn = f(tm Un)

2.2.2 One step methods

So the main question is how to calculate the U,? For exam-
ple, starting from the following formula:

X)) = X(t) + [ FsX(@)ds (23

ln

one could imagine a recurrence that is called a one-step
method given by :

Un+1 = Un + h¢(tna Una fna h) (2'4)

Each function ¢ gives another numerical method. Note that
¢ can also depend on Up,y1 or fo4+1; in this case, we speak
of implicit methods. A ”numerical scheme” is a procedure to
solve the ODE. It is formulated independent of the function
f that actually defines the ODE. We do not look for numerical
schemes that only work for particular ODEs but for schemes
that work for a large class of functions f. So in general the
regularity of f is not an important issue (see nevertheless the

”stiff” numerical schemes latter) so we can suppose f at least
cl.
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2.2.3 Definition of 4 classic numerical schemes

We describe below four important numerical schemes. To
illustrate their use we take two particular cases for function
f namely fi(t, X) =rX and fo(t, X) = rX2. We recall that
for fi, the solution X (t) of X(t) = fi(t, X(t)) is X(t) =
" X, while for fo, the solution Y () of Y'(t) = fa(t, Y (t)) is

Y(
Y(t) = l—r(l)fY()’

e Explicit Euler (denoted EE from now on):

(2.5)

Upsr = Up+hf(tn,Uy) = Un + by
U©) = X(0)

Here, ¢ = f,,. Examples: for f1 : Upy1 = Up + hrU, =
(1+7h)Uy; for fo: Upy1 = Up +hrU2 = (14+rhU,)U,.

e Implicit Euler (denoted IE from now on):

{ U1 = Un+hfara

U0) = X(0) (2:6)

Here, ¢ = fny1. Examples: for f; : Upy1 = Uy +
hrUps1 80 Upp1 = 12205 for for Upyr = Uy + U2,
so Up+1 is a solution of rthLH —Upt1+U, =0.

When f is Lipschitz, for sufficiently small h, the value
Un+1, a solution of the implicit IE scheme definition
equation, is unique, see exercise page

e Crank-Nicolson (denoted CN from now on, im-
plicit):

In +2fn+1}

{ Unir = Un+h] (2.7)

U©) = X(0)

Examples: for f1 : Uyp1 =U, + hr% so Upy1 =

142k U2+U?2 .
l—thn; for fo: Upy1 = Uy + hr—"—=5" 50 Upq1 is a
-2

solution of %UT%H —Upy1+ (1 + %Un)Un =0.
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e Heun (denoted H from now on, explicit):

{ Upir = Un+ g ot Fltnsss Un + hfi)
U@©) = X(0)

(2.8)
Examples: for f1: Upt1 = Un+%[rUn+r(Un+hrUn)];
for fo: Up+1 = Upn + 4[rU2 + r(U, + hrU2)?].

Intuition 2.6. The relation indicates that we
need to find a way to approximately calculate the inte-
gral of f(t, X (t)) between t, and t,4+1 = t, +h. The
EFE scheme takes an approximation using the method
of rectangles by using the value at t,, the IE scheme
uses the value at t,, + h, and the CN scheme takes the
average of the two, i.e., it uses the trapezoidal Tule.
As for the Heun scheme, it uses an approximation of
Xnt1 that it reintroduces into a CN-type scheme but
with the idea of keeping it explicit.

2.3 Error, Consistency, and Order

2.3.1 Error

When introducing the exact solution into the formula ([2.4))
for one-step methods, we obtain ”truncation errors” 7,4+1(h):

X(tn+1) = X(tn) + h¢(tn7 XTH f(tnv Xn)7 h) +th+1(h)'

true for the numerical scheme, i.e., U, instead of X, etc.

or

h

= @(tn, Xn, f, D). (2.9)

Tn+1 (h) =

X(tﬂ+1) - X(tn)
h

Definition 2.7. The remainder that appears when the true
solution is placed into the relation defining the numerical
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scheme (similar in form to the initial equation) is called the
truncation error. For one-step methods , it is Thy1(h)
defined in , which s called the local truncation error at
step n+ 1. The global truncation error is defined by the rela-
tion: T(h) = n_nllaxN\Tn(h)].

=1l,...

Remark 2.8. The truncation error here is the same as the
error (divided by h) between Xy, 1 and the U}, | obtained
starting from U, = X,,.

Example 2.9. Explicit Euler: Using the Taylor series for-
mula to the 2nd order:

X(t+h) = X(t)+hX(t) + %fﬂ)’é(g), Ect,t+h)

1. .
For (t =t, and t, + h = typ41), we get: Tp41(h) = §hX(§n)
Implicit Euler: : similar computations but also check the
technique and the exercise [2.5 page[39.
2.3.2 Consistency and Order

Definition 2.10. A scheme is said to be consistent if:

li h) = 2.1
lim (1) = 0, (2.10)

i.e., for small h, the exact solution satisfies the scheme.
A scheme is of order "p” if: T(h) = O(hP) for h — 0.

2.4 Stability and Convergence

2.4.1 Zero-Stability

To study stability with respect to perturbations, we check if
Z! defined by:

720 = 20 4 b (ta, Z, (b, ZE0), B) + 61
2" = 6o + Xo, (2.11)

is close to Upy1.
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To know more 2.11. Numerical inaccuracies do not
appear during an addition but mostly in the computa-
tion, often complex, of the function ¢; that’s why the
perturbations 0, are placed where indicated in the for-
mula (2.11)). For example, if f(t,X) = X2 —1 needs to
be calculated att =0, X = \/i the value \/52 —1=1
is often affected by errors. Python calculation exam-

ple:

In [2]: numpy.sqrt(2)**2 -1
Out[2]: 1.0000000000000004

Definition 2.12. The scheme given by ¢ is called zero-stable
if there exists hg and a constant C (independent of €) such
that if h < ho and |6,| < € (¥n): then

12— Upia| < Ce, ¥n > 0. (2.12)

Theorem 2.13. Assuming f and ¢ are Lipschitz with respect
to their second variable, meaning that there exist A > 0, hg >
0 such that Yh < hgy such that :

|¢(t7X)f(th)ah) - d)(ta}/af(t?Y)vhN < A|X - Y|aVX7Y

Then the numerical scheme given by ¢ is zero-stable.

Proof. Let’s denote: W, = Z,(lh) — U,. Then
Wast = Z{=Unthld(tn, 23, f, 1) =6 (tn, Un, f, h)]+héni1

50 |[Wht1| < |Wy| + hA|[W,| + h|dy41] thus by summing
these inequalities and simplifying terms:

n n+1
Wasal < [Wol +BAS (W] + 3 Al |
s=0 s=1

This allows us to conclude using the discrete Gronwall’s

lemma (see exercise [2.3] page [38):
[Whti| < [Wh| + hAexp(hAn) < (1 4 T)eexp(AT).
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1 O

Important technique 2.14. Question: which meth-
ods among EFE, IE, CN, H satisfy the assumptions of
theorem [2.13 ?

e KE: ¢ = f,, Lipschitz when f is.

e H: similar techniques

e For general implicit methods, see exercise [2.9 page
159,

o Intuition for IE: by definition, ¢ has the prop-
erty: d(tn,Un, fn,h) = f(tnt+1,Unt1) (assuming the
existence of a unique solution). Then for two ini-
tial points Uy, V,,, we need to bound f(tn4+1,Unt1) —
fni1, Va): |f(tng1, Ung1) — ftngr, Vo)l <
L|Un+1 - Vn+1| and |Un+1 - VnJrl’ < |Un - Vn| +
h’f(tn—&-laUn—l—l) - f(tn—l—lavn—l-l)‘ < ‘Un - Vn‘ +
hL|Un+1 - Vn+1| thus |Un+1 - Vn+1| S |Un - Vn|/(1 -
hL)...

o CN: similar techniques

2.4.2 Convergence

Definition 2.15. A scheme is said to be convergent of order
p if, with the previous notations, |U, — X,| = O(hP). A
scheme convergent of order 1 is simply called ”convergent.”

Theorem 2.16. Under the same assumptions as in Theo-
rem|2.15, we have:

|U,, — Xo| < (|[Ug — Xo| + nh7(h)) exp(Anh).
In particular, if for p > 1: Uy — Xo| = O(hP) and 7(h) =
O(h?), then |U, — X,| = O(RP) (the scheme converges of
order p).

Proof. We follow the same steps as in the proof of Theo-
rem with §; = 7j(h) (using the discrete Gronwall’s
lemma). Here, the exact solution X, plays the role of the

perturbation Zflh) . O
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To know more 2.17. The previous theorem can be
rewritten as stating that consistency and stability
imply convergence. This is a principle often en-
countered.

Corrolary 2.18. The schemes EE and IE converge of order
1. The schemes CN and H converge of order 2.

Proof. 1will provide detailed reasoning only for the Crank-

Nicholson scheme:

Xn+1 = Xn + g |:f(tn> Xn) + f(tn+17 XTL+1):| + th+1(h)
(2.13)

so (for now, treating it as if it were explicit, see exercise

for details):
o h / /
X7’L+1 == Xn + X + X n+1 + th+1 (h) (214)

Also, the Taylor series at order 2 for X’ and at order 3 for
X provide:

h?
re1 =X, +hX] + X )(n)
h h3
Xp+1 =X, +hX]) + X”+ G

Replacing (2.15)) and (| into (2.14) gives:

Wi (1) = h63X< ©-Lxpm e

(2.15)

—XP(€)(2.16)

n

which leads to 7,11(h) = O(h?) (after some calculations
to transfer the implicit version into an explicit one). [

To know more 2.19. So, we have several methods,
each with its convergence order. Which one to choose
then? A naive answer would be to pick the scheme with
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the highest order. However, as we saw with CN, for the
order to be effective, we need to use higher derivatives
of f (meaning f needs to be smooth), and on the other
hand, the higher the order of the scheme, the more
termediate calculations of the f function are required
(EE/IE have only one f calculation, while CN uses
two), which can be costly. In practice, one rarely goes
beyond order 4 or 5 (and sometimes sticks to order1).

2.4.3 Absolute Stability

Here, stability is considered from the perspective of the solu-
tion over a long time 7' = Nh (as T" — o), but for a fixed
step size h (so N — o0). For A € C, t > 0, we consider the
test problem:

Y (t) = \Y (2) (2.18)
Y(0)=1 (2.19)

with the solution Y (t) = e*. For Re(\) < 0, we obtain
tliin Y (t) = 0. So, any local perturbation in time is ”erased”
—+00

in the long run. This is a very desirable property for numer-
ical schemes that have to combat rounding errors, etc. We
want to preserve this property.

Definition 2.20. A scheme is said to be absolutely stable if,
for f(t,z) = Az and Yh,\, U, — 0. Otherwise, its region of
absolute stability is:

{hX € C|U, — 0}.

To know more 2.21. Choosing f to be linear is not
so surprising because at first order f(t,xz) ~ f(t, Xo)+
%(t,Xo)(x — Xo) so, apart from a constant, we have
a linear function.
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Im(z = \h) Im(z = \h)
Qﬂ Re(z)z Ah) b(z) Ah)
Im(z = \h)
T Re(z\: Ah)

Figure 2.1: The stability of Explicit Euler (top left), Implicit
Euler (top right), and Crank-Nicholson (bottom): in green
stability region, in red instability region.

Example 2.22 (Explicit Euler). U, = (1 + h\)"Uy. We
define the stability region by imposing the stability condition:
|1+ hA| < 1. This corresponds to the interior of B((-1,0),1),
see figure for an illustration.

U, Uo

Example 2.23 (Implicit Euler). U, +; =

To find the stability region, limit the time step h by imposing
the stability condition:

|1 —hA| > 1.

So, here it is the exterior of B((1,0),1), see figure[2.] for an
illustration.

Example 2.24 (Crank-Nicholson).

A n+1
I+
Un+1 — 7h)\ U(). (220)
11— —

T—hx (1= Rt
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The stability region is defined by imposing the stability con-
dition:

hA

1+ —
z=hAeC: 7h2>\ <1 ={2€C: Re(z) <0},

11— —

2

see figure [2.1] for an illustration.

Example 2.25 (Heun). The stability region is (after calcu-
lations) {z € C: [1 4+ z + §| < 1}.

2.5 Higher-Order Methods: Runge-Kutta

These are methods that evaluate the function at intermediate
steps:
Un+1 = U, + hF(ty,Up; h, f). (2.21)

with the function F' of the scheme defined by
F(tn, Unsh, f) = ) biK; (2.22)
i=1

Ki = ftn + cih,Un +h Y _aiK;),i=1,2,....5,¢; > 0. (2.23)
j=1

A method of this kind is called a Runge-Kutta (R-K) method.
For a simpler presentation, we introduce the Butcher tableau

c| A
of the scheme 5 or
c1| a1l aiz ... Gis
C2 | 21 @ ... G2
(2.24)
Cs | As1 Qg2 ... Qgg

[ bt by .. b

We will always assume Y _°_; a;; = c;.
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Definition 2.26. If A is strictly lower triangular, then the
method is called explicit; if A is only lower triangular, then
the method is semi-explicit. In all other cases, it is an implicit
method.

Intuition 2.27. ¢ When A is lower triangular with
zero diagonal, the calculation of K1 is done explicitly.
Then this allows the explicit calculation of Ko and so
on. The scheme is thus explicit.

o When A is triangular with a non-zero diagonal, the
method requires the sequential solution of s equations
(not necessarily linear) to find the K;, i < s.

o When A is full, the method requires the simultaneous
solution of s equations (a system of equations) to find
the Ki, 7 S S.

Remark 2.28. For implicit methods, one would also need
to show the existence of a solution for the time steps.
Assuming f is Lipschitz, this follows from Picard’s fized-
point theorem by taking a recurrence as in Exercise [2.5.

Example 2.29 (4th-order R-K method). Consider the scheme:

h
MH1=U5+EGQ+2K§+2K3+K@ (2.25)

Kl = fn = f(tnv Un)7 (226)
h h
h h
K3 = f(t, + 5 Un + §K2>7 (2.28)
K, = f(tn_H, U, + hK3). (2.29)
The associated Butcher tableau is
0 0 0 0 0
1/211/2 0 0 0
/21 0 1/2 0 0 . (2.30)
1 0 0 1 0
|1/6 1/3 1/3 1/6

This scheme is of order 4.
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2.5.1 Construction of Second-Order Methods (Ex-
plicit)

Proposition 2.30. FExplicit methods with s = 2 that are
second-order (in terms of convergence) satisfy by + by = 1
and byca = 1/2.

Proof. Take s = 2. Since the method is explicit, the ma-

trix A in the Butcher tableau is strictly lower triangular,

ie., A= ( 0 0). Let a := a9y, then ¢y =0+ 0 =0 and
asy 0

cao=a+0=a.

The corresponding Butcher tableau is:

0] 0 O
ala 0
b1 by

Then Upy1 = Uy + AF with: F = b1 K1 + boKs, K =
ftn,Un) = fn, Ko = f(tn + ah,U, + haKy) = f(t, +
ah,Uy, + hafy).

So, Up+1 = Up + h(by fr, + baf (tn + ah, Uy +ahfy)). For it
to be of order 2, the truncation error 7,11 (h) must satisfy
Tut1(h) = O(R?). )

Recalling that 7,41(h) = %, where U, is the
scheme starting from the exact solution X(t,) = X,,
here, U}, 1 = Xy + hb1f(tn, Xn) + b2f(tn + ah, Xy, +
ahf(tn, Xn))]

We will need the 2D Taylor formula: let G' be a C? func-
tion, then

oG oG

G(a+hlvﬁ+h2):G(avﬁ)+ 8a(a7ﬂ) h1+ 86 (Oé,ﬁ)hz
—— N
notation: G Gp

+0 <<\/h% - hg>2> : (2.31)

So, by the 2D Taylor formula,
fltn +ah, X, +ahf(tn, Xn))
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= f(thn)‘i‘ah[ft(tn’ )+fX tn, Xn f(thn)]+O(h2)
= [(tn, Xn) +ah[fo(tn, Xn)+ Fx (tns Xn) f (tns Xn)]+O(h?)
On the other hand, as X'(t) = f(t, X(¢)), we also have

( )
( )

d ., d
SX(1) = LX)

= filt, X (1)) + fx (8, X(£)) f (¢, X (2)).

X//(t) —

So,

f(tn 4+ ah, Xy, + ahf(tp, Xn)) = f(tn, Xp) + ah X" (t,) + O(h?)
= X'(t,) + ahX"(t,) + O(h?) (2.32)

The truncation error thus satisfies:

Xnt1 —Upiy

Tn+1 (h) = h

Taylor-Lagrange

—_——t
_X(tn41) = X(tn) —hb1 X' (tn) — hba(X'(tn) + ahX" (tn)) + O(h?)

h
hX'(tn) + ’;ix”(tn) + O(h3) — hb1 X' (tn) — hba (X' (tn) + ah X" (tn)) + O(R3)
B h
=X'(tn)(1 — by —ba) + h (% - abQX”(tn)> + O(h?)

— X (tn)(1 = b1 — by) + hX" (tn) (% - abz) +O(h?).

(2.33)
For the method to be of order 2, it is necessary and suf-
ficient that by + by = 1 and aby = 1/2, which gives the
conclusion. O

Example 2.31 (Heun as a Second-Order RK Method).
In the case where by = by, then by = by = % and a = 1:

010 0
111 0
2 2

So: K1 = f(tn,Uy) = fn and Ko = f(tn+h,Up+hf(t,,Uy)) =
f(tns1, Unt+hfn), thus Up1 = Un+%[fn+f(tn+1a Un+hfn)],
giving us the Heun method.
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2.5.2 Consistency

Proposition 2.32. Let f be a Lipschitz function. Then
the Runge-Kutta method (explicit) is consistent if and only

if Yo bi=1.
I Proof. by Taylor expansions. O

2.6 Advanced considerations: adaptive
time steps for Runge-Kutta

Motivation: Sometimes the solution is almost constant, but
other times it is highly variable. We would like to take advan-
tage of the ”calm” regions and use a large step h, which will
be adjusted later in highly oscillatory regions. For this, we
need to employ adaptive step (i.e., variable and adjusted)
methods. To determine how to choose this step, we need
error estimations.

How to estimate the error in practice? The easiest way
would be to double the step. One idea would be to perform
a calculation with a step 2h and compare it with two consec-
utive calculations with step h. Let Y5, be the value obtained
after a single step of size 2h and Y}, j, after two steps of size
h. Both are assumed to start from X, or close to it within a
tolerance. We know that, if the method is of order p > 1:

X (t, + 2h) = You + (20)PT14p, + O(hPT?)
X (ty + 2h) = Yy + 20PT1h, + O(RPT2).

The quantity A = Yo — Yp,, = (2PT1 — 2)hPT14), helps us
adjust the h.

Remark 2.33. The formulas provide an approximation
of order p+ 1 for X(t, + 2h). However, the error would
then be unknown.

Although in principle the method above would be inter-
esting, it uses too many evaluations of f. We will refine it by
constructing two methods that use the same evaluations (thus
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same K;) but whose linear combinations involving b; yield dif-
ferent orders. We then talk about embedded schemes of
Runge-Kutta-Fehlberg (R-K-F). Notation:

c| A
T
ZA)T
ET

where ¢, A,b give a scheme of order p while ¢, A, b7 give a
scheme of order p + 1. The difference £ = b — b serves to
estimate the truncation error A = h> 7 | E;K;.

The most popular are the R-K-F schemes of orders 4-5 or
5-6 or even 2-3. In practice, the algorithm is as follows:

- At the beginning, we specify a tolerance Ay.

- If A > Ag then we redo the calculation with the step
h=hr/50.

- If A < Ay, the step h is kept constant.

2.7 Advanced considerations: systems of
ODEs

Let I C Ry be an open interval and F' : R x R® — R". The
problem is to solve the following Cauchy problem:

Y'(t) = F(t,Y(t))
{ Y(t=0)=YyeR" (2.34)

Example 2.34. X" = f(X) is not an ODE, but it can be
written as a system, by setting: Y1 = X,Yo = X', and we
get:
{ Y/ =Y,
Y] = f(11)

Theorem 2.35 (existence and uniqueness). Let F' :]—00, co[xR" —
R™ be a continuous function and Lipschitz with respect to the
second variable

IF(t,y) — F(t,9)ll < Llly —gll vt R, VyeR",
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with an L not depending on y € R™. Then the Cauchy prob-
lem has a unique global solution (i.e., defined for all
t > 0). If F is Lipschitz only around (tog = 0,Yp), then the
solution is only locally defined.

Particular case: F(t,y) = Ay with A being an nxn matrix.
The problem

Y' =AY

Y(0) =Yy
has the (unique) solution Y (t) = e4*Y where we recall the

k
definition of e/t = 3" (it!) .

If A is diagonalizable, i.e.:
1) 3Q invertible such that A = QDQ~!, D diagonal

2) or equivalently 3V;, A;, such that AV; = \;V;, | Vi|| = 1,
and {Vj;i=1,...,n} is a basis of R"

then, Y (t) = S0, NV, < o, Vi >.

2.7.1 System Stability:
By setting Z = QY we obtain:

Y'=AY =Y =QDQ 'Y = Q'Y =DQ7'Y (2.35)
And, since Z' = (Q)~'Y”’, we derive the following differential
equation: Z' = DZ, and the problem:

7! = N7

7! = AnZn

The solutions to this problem are given by: Z;(t) = e**Z;(0),
and the stability of the system is equivalent to the stability
of all the ODEs in the problem.

Example 2.36 (Explicit Euler). U, 1 = U, + hf(t,,Uy).
Let f(y) = Dy.

Applying Explicit Fuler to this example, we have: Upy1 =
Un+hDU, = (1+hD)U,. Therefore, the scheme is stable if
1+ hXN| <1 foralli=1,...,n.



2.7. ADVANCED CONSIDERATIONS: SYSTEMS OF ODES31

Example 2.37 (Implicit Euler). U, 11 = Up,+hf(tni1, Unt1);
for the previous example, we have: Uyy1 = Uy +hDUpy1, so
Un+1 = (1 = hD)7U,. The scheme is stable if |1 — hX\;| > 1
foralli=1,... n.

To know more 2.38 (Implementation). We al-
ways consider the case f(t,y) = Ay.

- For explicit schemes Upy1 = U, + hAU,, so it’s a
direct calculation.

- For implicit schemes Up+1 = Uy + hAU 41, Upt1 =
(I — hA)~'U,; a linear system must be solved. For
more complicated functions f, methods like Newton’s
or Picard’s approximation are needed (cf. exercise
ete. ...

2.7.2 Stiff Systems

We have seen that implicit schemes are sometimes challenging
to implement; why use them then? Consider the following
differential system:

o' = 998u + 1998v with u(0) =1
v = —999u — 1999v with v(0) =0

We make the change of variables u = 2y — z and v =
—y + 2, which gives us:

{ y =y :{ y(t) = ey,

2 = —1000z 2(t) = e 1000z,

(so A1 = —1, Ay = —1000). Returning to our initial variables,
we obtain the desired solution:

u = 2t — 1000t

v = et 4 1000t

For the stability of Explicit Euler, |1 + hA\1| < 1 and
|1+ hAg| < 1 are required, so h < 125.
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For Implicit Euler stability, |1 —h\;| > 1, which is always
satisfied (Vh > 0). Assuming we are only interested in the
et part of the solution (treating e~!%%% as a perturbation,
which it is), the precision of both schemes could be good for
sufficiently large steps h; however, for Explicit Euler, we must
use a small h as stability is not guaranteed otherwise. Con-
clusion: using implicit schemes allows solving with a larger
h, hence more quickly.

2.8 Multi-step Methods

The idea behind these schemes is to use previous steps (val-
ues) that are available.

Vocabulary: These schemes are also known as predictor-
corrector methods.

Definition 2.39. The linear multi-step scheme of order s
(with the notation as = 1) is given by the recurrence:

> arynik =B bpf (bt Ynsk)- (2.36)

k=0 k=0

Here yp 4+ is unknown, and the previous values yp1s—1,-..,Yn
are known.

We notice that if by # 0, then the method is implicit;
otherwise, it is explicit. Let’s consider some examples.

Example 2.40. Explicit Euler For s = 1,a9 = —1, a1 =
bp =1, by =0,

L yn1+ (_1) “Yn=1- hf(tmyn) +0- hf(tn-I—la yn-i—l)'
Example 2.41. Adams-Bashforth Two-Step (explicit)

Taking s = 2,a9 = 0,01 = —1,a2 = 1,bg = —%,bl = %,bg =
0, the scheme is defined by the relation:

3 1
Yn+2 = Yn+1 + §hf(tn+1a yn—f—l) - §hf(tna yn) (237)
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Example 2.42. BDF Two-Step (implicit) Here s = 2,ap =

%,al = —%,ag =1,bg=0,b1 =0,by = %, and thus:
4 1 2
Ynt2 = 3Yn+1 + 3Yn = ghf(tn+2a Yn+2)- (2.38)

Definition 2.43. The local truncation error is Tn1s(h) de-
fined by:

L ZZ:O ak’X (tn-‘rk’) —h EZ:(} bkf (tn+k7 Xn-‘rk)
Tn+s(h) = .

h
(2.39)

Reminder: The global truncation error is 7(h) = max | 7,15 (h)|;
n

the multi-step scheme (ay, by,);_, is consistent if limy, o 7(h) =
0.

Theorem 2.44. The multi-step scheme (ay,by)j_, is con-
sistent if and only if:

iak = 0, i bk = i k:ak.. (2.40)
k=0 k=0 k=0

or, equivalently:

—1 -1
SZCLk = -1, ibk :S+82kak. (2.41)
k=0 k=0 k=0

Example 2.45 (EE as a Consistent Multi-step Scheme).
Taking the previous example where ag = —1,a1 = 1,by =
1,b1 = 0, the conditions for the theorem are satisfied. Thus,
the EE scheme is consistent.

Example 2.46 (Adam-Bashforth as a Consistent Mul-
ti-step Scheme). The Adam-Bashforth scheme satisfies

2 2 2
Z ar =0 and Z apk = Zbk =1. (2.42)
k=0 k=0 k=0

Therefore, this scheme is consistent.
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Example 2.47 (BDF as a Cons1stent Multl-step Scheme).

The BDF scheme (s = 2) satisfies Zak =0 and Zakk =

k=0 k=0
2

Zbk = 2/3. Hence, this scheme is also consistent.
k=0

2.9 Application in Epidemiology: SIR
Model

We quickly present the modeling leading to the SIR system.
We refer to [5, 8] and similar references for a more detailed
presentation (just to change, we took a reference prior to the
COVID-19 pandemic...). The variables are:

- S = the number of people susceptible to infection (the
population not yet affected by the epidemic).

- I = the number of infected people.

- R = the number of people who have had the disease,
died, or can no longer transmit it (having acquired immunity
or being in quarantine, etc.).

Let N = S(0) + I(0) + R(0) be the initial population
(which will be conserved).

Model assumptions:

1. The number of infections (transition from S to I) is
proportional to the number of individuals in S, the in-
fection rate I(t)/N, and the duration A¢t. We denote
as the proportionality factor. Since the number of new
infections between t and t + At is S(t) — S(t + At), we
obtain S(t) — S(t + At) ~ BSIAt/N

2. The transition I — R is proportional to the number of
individuals in [; it depends on the recovery rate v (here
1/~ is the average number of days before leaving the I
compartment).

By taking the limit At — 0, we obtain the system of
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equations, called the SIR model:

45 = _BSI/N (2.43)
= BSI/N —~I (2.44)
it =4 (2.45)

We assume S(0) = Sy # 0, I(0) =1y > 0, R(0) = Ry =0.

Remark 2.48. Since £(S+1+R) =0, then S(t)+1(t)+
R(t) = N = cst.

A first question to ask is when I will be increasing or
decreasing. Fortunately, this can be read directly from the
equation for I: I' = I(8S/N — v), so it will increase when
S/N is greater than 7%0, where Ro = (/7 is known as the
”reproduction rate.” Note that Ry depends only on the char-
acteristics of the disease and transmission and not on the
state S(t),I(t), R(t). In particular, if initially S(0) ~ N,
there will be no epidemic (in the sense that I will always
be decreasing) if Ry < 1, and conversely, there will be an
epidemic with exponential growth if Rg > 1.

Therefore, Ry is an important number, and in particular,
it is the target of most epidemic containment policies; to
make it sub-unitary, you can:

1. Make 8 small by reducing contacts (lockdown, etc.).

2. Make v large by isolating the sick (so they are no longer
contagious).

3. Otherwise, finally, make S(0) smaller through vaccina-
tion if it is effective and without side effects (oth-
erwise, it won’t work).

In this (constant parameter!) model, the typical evolu-
tion of I, illustrated in Figure [1.2] on page |8 is as follows:
it grows until a maximum value (corresponding to the ”epi-
demic peak”) and then decreases. Of course, in practice, it’s
more complicated because § will change depending on the
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preventive measures implemented, which in turn will fluctu-
ate, etc.
The total number of infected individuals is

Ry = tILIgo R(t) =1Ip+ 5y — tlirgo S(t)

Note that lim; o S(t) exists because S(t), (), R(t) >, Vt
and S is decreasing).

Let ¢ be the size of the epidemic. It can be shown (see

[3]) that ¢ is a solution of 1 — % — ¢~ Ro(¢+I(0))

Remark 2.49. Note that S = limy_,o S(t) # 0; there-
fore, even in the absence of any protective measures, the
epidemic will not affect everyone. It is then called the phe-
nomenon of herd immunity in the SIR model. However,
‘not everyone’ can still include too many people, and in
practice, epidemic containment measures must be taken.

In practice: 8 and ~ are unknown, so we proceed in 2 steps

e Inversion: find 3,~ from observations R(n),n = 1,...,
Nmaz

e Prediction: calculate S(t),I(t),t > Nmag

Remark 2.50. Sometimes more complicated models are
necessary, such as: S — E — I — R or as in [1J.
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2.10 Ordinary Differential Equations Ex-
ercises

Exercise 2.1. (Gronwall’s Lemma: Integral Variant)
Let T > 0 (it can also be 00 ), a(t), b(t), A(t) be continuous
functions on [0,T], where A(t) > 0 for all t. Define A(t) =

fg AT)dT.

1. If for allt > 0:

a(t) < b(t) —I—/O A(s)a(s)ds, (2.46)
then

a(t) < b(t) + /0 t AO=AB) X (5)b(s)ds. (2.47)

Indication: Estimate the derivative of A(t) = e=A®) fot A(s)a(s)ds.

Alternative: Let & be the right-hand side of , It also satisfies
&(t) = b(t) + fot As€sds (direct calculation or use V(t) = fg AE), i.e.,
with equality. It is then natural to want to show that a(t) < &(t)
for all t; this is done by bounding £ — a using (2.46) and the equation
for €.

2. If b is differentiable with an integrable derivative on
[0,T7], then

a(t) < eM® (b(0)+ /0 t eA(S)b’(s)ds>. (2.48)

3. If, in addition, b is monotonically increasing, then
a(t) < Op(t). (2.49)
4. Verify that in the absence of the assumption \(t) > 0,

a counterexample is AN(t) = A < 0, b(t) = b+ w(t) ,
supp(w) C]0, T, a(t) = beM.
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Exercise 2.2. (Gronwall: Differential Variant without the
sign assumption)

Let T > 0 (it can also be 00), g(t), A(t) be continuous
functions on [0,T], and a(t) a differentiable function with a
continuous derivative on [0,T]. Define A(s) = fot A(T)dr.

If for all t > 0:

a'(t) < g(t) + At)a(t) (2.50)
then
a(t) < eMa(0) + /t A=A g(5)ds. (2.51)
0

Indication: Estimate the derivative of A(t) = e 2®a(t).

Exercise 2.3. (Gronwall: Discrete Variant)
Let ky, be a sequence of positive real numbers and ¢n, > 0
a sequence such that

$0 < go (2.52)
n—1 n—1

Sn < go+ Y Pst Y ks, n > 1. (2.53)
s=0 5=0

If go > 0 and p, > 0 for alln > 0, then

n—1 n—1
on < (go + Zps> exp (E k5> (2.54)

Exercise 2.4. Consider the Cauchy problem.:

2 (t) = 2|x(t)|/? (2.55)
z(0) =0 (2.56)

1. Show that for any constant A € [0, 00|, this problem has
the solution xx\(t) = (t — N\)2 if t > X and x\(t) = 0
otherwise. Comment on uniqueness.
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2. Write an explicit/implicit Euler scheme and explain to-
wards which solution x(t) it converges numerically.

Exercise 2.5 (Existence of Implicit Schemes). Let ¥ : Ry X

R xR — R be Lipschitz with respect to all arguments, and let
h > 0.

1. Show that the equation
y=x+h¥(t,z,y), (2.57)

has a unique solution for small enough h and provide
a numerical method to compute it. Hint: Picard itera-
tions can be used. Notation: the solution will be denoted
by y = s(t,xz, h).

2. Now, lety be a solution of (2.57)), and ¢ be the function
defined by
y=2x+ ho(t,x). (2.58)

Provide the formula for ¢ in terms of s(-) and ¥(-) and
show that ¢ is well-defined and Lipschitz for sufficiently
small h.

Exercise 2.6 (Stability of Implicit Schemes). By using possi-
bly Fxercise|2.5, show that the Crank-Nicholson scheme sat-

isfies the assumptions of Theorem (page @) for zero-
stability.

Exercise 2.7 (Theoretical Convergence). Provide a conver-
gence result for the Euler scheme without using the discrete
Gronwall’s lemma.

Hints: Start without round-off errors and establish a re-
currence formula for the error.

Exercise 2.8 (RK Writing). Verify that the Heun’s method
1s indeed a two-step Runge-Kutta method and write down the
corresponding Butcher tableau.

Do the same for the modified Fuler method:

h h
Up41 = Up + hf(tn + §uun + §fn)
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Exercise 2.9 (6-Scheme). Consider the ”-scheme”:

Upyl = Up + h {(1 - H)f(tny Un) + Of(tn+1a unJrl)} .
1. Write down the Butcher tableau of the scheme.

2. Show that the stability region of this scheme includes
{z = hA; Re(z) < 0} if and only if 0 > 1/2.

Exercise 2.10 (Multi-Step Methods). 1. Show that the BDF-
2 scheme (2.38)) satisfies the consistency conditions.

2. Show that for BDF-2, the truncation error is indeed of
order 2.

3. Determine the order of the truncation error for the Adam-

Bashforth scheme (2.37)).

Exercise 2.11 (SIR Model). Write one step of the implicit
Euler method for the system

ds

Ay < |
o rS1,
dI
E:rSI—aI,
dR

— =al.

a ¢

Exercise 2.12 ((Identification of ODE Schemes)). With the
notations from the lecture, a student intends to numerically
solve the Lorenz system: 2'(t) = o(y(t) — z(t)), ¥'(t) =
x(t)(p—2z(t))—y(t), 2/ (t) = z(t)y(t)—Bz(t). He has three pro-
grams L1, L2, and L3, each implementing a different scheme
in the list: Explicit Euler, Implicit Euler, Crank-Nicholson.
He performs the following tests: he runs the three programs
with o = 10, B = 8/3, and p = 28. h = 1072, starting
from (xo,y0,20) = (1,2,3). He obtains vectors representing
the numerical solution after TWO time steps (to 1 x 1073
accuracy):

Program L1: v_1=[1.228, 2.511, 2.893]

Program L2: v_2=[1.213, 2.483, 2.886]

Program L3: v_3=[1.244, 2.543, 2.900]
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1. Recall the definitions of the three schemes.

2. Find the values that the Fxplicit Fuler scheme obtains
after ONE time step.

3. Determine which scheme each program wuses. Rigor-
ously justify your answer.

Note: It is possible to solve the problem without excessive calculations or a

calculator. If necessary, approximate to 3-4 decimal places. Solution on page
Various other exercises (Additional ODE)

Exercise 2.13. Consider the Cauchy problem:

r' =2y, (2.59)

, —_—

y = —2x —42® — y, (2.60)

with initial values (x(0),y(0)) = (xo,y0) # (0,0). Show that
this problem has a mazimal solution over the interval |a, B]
(with —oo < v < B < 00).

Exercise 2.14. Consider the Cauchy problem:

' =2y(z—1), (2.61)
Yy =—z(z—1), (2.62)
7= —xy, (2.63)

with initial values (2(0),y(0), 2(0)) = (x0, Yo, 20). Show that
this problem has a mazimal solution over the interval [0, col.

Exercise 2.15 (Autonomous systems). Consider the system
x' = f(x) with f being C* class. The state = is a vector in
R4

1/ Let x1 and x2 be two solutions of this system. Then if
these solutions touch at a point, they are equal.

2/ So, let x be a solution. Then either t — x(t) is injec-
tive, or it is periodic.
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2.11 ODE Python lab

Exercise 2.16 (Numerical precision). Implement exercise
in order to observe all the behaviours described in the
lecture for EE and IE with finite precision or not.

Exercise 2.17 (SIR model, scheme order). Write a pro-
gram that solves the SIR system — using the Fu-
ler Fxplicit, Heun, and Runge-Kutta schemes of order 4 with
Butcher table ([2.30). Take as an evample Sy = 10.0°, Iy =
10, Ry = 0 (but work with the proportions of the total popu-
lation), r = 0.5, a = 0.33, T =150.0, N = 150 (h=T/N ).

1. Implement it using the "odeint” function in python (with-
out any scheme).

2. Study the order of the schemes by varying h and com-
paring it with the solution found by ’odeint’ at time T
(take the error on ”S”). For this study, take Ty = 52,
T = 60 (get the initial values at time Ty from the previ-
ous calculation) and h = 0.05,0.01,0.1,0.5,1,2,4. The
result should be similar to that in figure[2.2

3. Study the impact of control policies that will change r
and a.

Exercise 2.18. Numerically study the stability of Fuler Ex-
plicit for the case of the system x'(t) = Ax(t) with A = 1,
T =100- 2w, h = 27/100. Typical results are in figure .
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Chapter 3

Automatic
Differentiation,
Backpropagation,
Optimization, Control

3.1 Introduction

The goal of this chapter is to provide some insights into how
to automatically compute gradients (given the code that com-
putes the function). This is known as automatic differenti-
ation; one way to implement it is through backpropagation,
which is used in optimization and control problems. Let’s
start with some examples.

3.1.1 Example 1: Explicit function

Calculating the gradient of a function with 3 variables f(z,y, z) =
(322 + %)z — 2. This case is quite simple; we can perform the
operations manually to calculate V f = (0, f, 0y, f,0.f). This
will serve as a textbook case and verification.

45
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3.1.2 Example 2: Optimization in an epidemio-
logical model

We now consider a current context with the SIR system, seen
previously. The system is of the form X' = f(X (), u(t))

S = —BSI/N,
I =BSI/N, —~I
R= vl

with u(t) = B(t) = /8 the control and NN, the total population.
Thus, the goal is to minimize the cost of containment ( fOT c(B(t))dt)
and the number of infected people (S(0) —S(7T')) over the pe-

riod [0,T]. In other words, we seek:

T
min /(3] == S(0) = S(T) + /O (A1)t

We have initially:

9
op
However, the difference S(0) — S(7) is much less obvious to

differentiate because # does not appear explicitly, although
it does appear in this function.

Ji ' (30t | = ¢(5(0)

3.1.3 Example 3: Neural networks (NN)

Suppose we have a database 2; we then wish to define a neu-
ral network, Neural Network (NN), that will ”learn” based
on certain results from this database, w € .

We will then seek to optimize certain parameters X, so
that the output of our network is as close as possible to the
chosen examples w. Thus, it is an optimization problem:

arg m}}n {Ey (£(X,w))}

We will be concerned with neural network of which we
give an example below. The principle is as follows: we have



3.1. INTRODUCTION 47

an input layer, called the Imput Layer, a certain number of
hidden layers, the Hidden Layers, and an output layer, the
Output Layer, see figure [3.1] for an illustration.

Input Hidden Hidden Output
layer layer 1 layer 2 layer

— Output

Connexion Connexion Connexion
para- para- para-
meter meter meter

Wi W Ws
Figure 3.1: Example of a neural network

Each of the hidden layers ()7, Y') performs the following
calculation: We take all the results from the previous layer,
we assign them a weight (a vector W, and a bias b). We
then obtain Y and finally apply an activation function A
(for example, the ReLU function which is the positive part:
ReLU(x1,.xn) = ((1)+, ..., (zN)4), we get Y.

Finally, we apply an output function g to the last layer
(for example, a sigmoid-type function z — H% which trans-
forms the input into an output of type ’probability’, i.e., a
number between 0 and 1). If we have to choose between K
classes, we can use the softmax function

K
Tk
zeRE = s(z) = (Z:;eﬂ> e RX, (3.1)
=1 k=1

which returns a probability distribution, and in particular the
component s(x)g = % of the result can be interpreted as

the probability that label k is correct one.
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In general, we can describe the output Y,y; of a given
layer n + 1, with respect to the output Y, of the previous
layer n, as follows:

Yn+1 - Wn+1Yn + bn+1

Yn—l—l = An+1 (an—l-l)

We then seek to optimize the weights W as well as the
biases b, that is, to optimize:

X = (Wi, b1, ..., Wy, by)

To minimize a loss function: £(X,w) which describes ”the
difference between the estimation by the neural network with
parameters X, and the examples w”. This minimization can
then be performed with gradient descent.

3.2 Finite Difference Approach

A first idea would be to use the formula

ORI (CARVRF

This formula is derived using the Taylor series. It is called
the formula of finite differences (non-centered). There is also
another more accurate formula

) f(@+h) = f(z—h)
/(@) = -

It is also derived with the Taylor series (exact to order 2
with remainder of order 3). The approximation is called
centered finite differences of order 2.

Now let’s analyze the cost of such a formula for a general
function G(y1,...,yn). It should be noted that in general,
the most expensive part is the evaluation of the function G.
Thus the cost will be expressed in terms of the number of
evaluations of the function G needed to calculate V xG.

+O(h). (3.2)

+ O(h?). (3.3)
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For example, if we want to obtain 0,, G we can use the
approximation (3.3]) for the function

$|—>f($) = G(yh"'7yk—17$7yk7”'7yN)~ (34)

This means that calculating 9,, G will cost two evaluations of
G. So calculating V xG as a whole will cost 2N evaluations of
G which is prohibitive when N is large (for neural networks
N can be of the order of 10°!). Another approach is needed.

To know more 3.1. However, finite differences are
used to independently verify the implementation that
will be done with automatic differentiation detailed
later on.

@ Warning 3.2. Generally, one also needs to pay
attention to numerical precision. If we assume that
the numerical precision of the function f calculation is
10716, then we will have an error of 102;;6 +h?; this can
be minimized with respect to h to obtain the optimal
error order which will be O(10719-65) (achicved for h =
O(10719/3)). Note that in particular, we never achieve
the order of 10716 for the derivative calculation (this
can be slightly improved by using higher-order formulas
than 2 ... but which have an even greater cost).

3.3 Computational Graphs, Notions of
Forward and Backward
3.3.1 Direct Computational Graphs

We now delve into the heart of the matter: computational
graphs.

Definition 3.3. Computational Graph. A computational
graph is a directed, connected, acyclic graph, in which the
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nodes correspond to operations that create new variables using
the values of variables from incoming nodes.

Each variable can thus be used by a target node, and each
operation takes as input the result of previous operations. Its
own result can then be used by other target operation nodes.

Let’s take the example of the function f : R? — R defined
by:
fz,y,2) = 322 +y)z — . (3.5)

We can associate with this function f the computational
graph in figure [3.2

UL =T —— uy = 3u?

U3 =2 ——— ug = Us X ug

Figure 3.2: Computational graph of f in equation (3.5]).

Remark 3.4. the yellow nodes (uy,us,us) have no in-
coming degrees, they are nodes that contain only the input
variables to our function f. The blue node u7 constitutes
the output of the function f. This graph is said to be direct:
it performs the same operations as those of the function.

Definition 3.5 (Input, Output). The Input of a direct
computational graph consists of all nodes with zero incoming
degree. The Output of a computational graph consists of all
nodes with zero outgoing degree.

Example 3.6. Taking again figure the yellow nodes
(u1,ug,us) are Inputs, the blue node uy is an output.
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U4 U, 5 UG U7
number of variables 1 2 2 2
function 3U12 Us+Us | Us xUs | Ug—Us

Table 3.1: Functions of the nodes of the graph in figure

In table [3.1] we specify the functions that define each node
of the graph in figure In an optimization problem, we
will seek to obtain the gradient of the function computed by
the graph. This is where the notion of inverse computational
graph comes in.

3.3.2 Backward Computational Graphs

We begin with some reminders concerning the computation of
derivatives of composite functions. We assume all functions
to be sufficiently regular. Let f : RX — R be a function and
g1, ..., g1, functions from RY to R, and let VX € R":

F(X) = f(1(X), ..., 9L(X))

The derivative of the function F' with respect to X} is given
by:

OF _;W(gﬂX),...,gL(X));;lk, (3.6)

We recall that the gradient of the function F' is the vector:

oF oF
VxF = < )

T&""’E (3.7)

Sometimes the notation ”V x F” is also seen as " Jx ™.

To know more 3.7. We recall the definition of the
first-order derivative (Jacobian):

Definition 3.8 (Jacobian). Let H : RN — RP with
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the notations, for X = (X1,..Xy) € RV:

Hy(X)
HX)=| .. |. (3.8)
Hp(X)

The Jacobian matrix of H is the matriz of the deriva-
tives of H written as follows

OH1 OH,
0X1 OX N
JxH=1| : ... = | eRP*, (3.9)
OHp . O0Hp
0X1 OXnN

In particular (JxH); = % Sometimes the trans-
J
pose is also used B2 = DxH = (JxH)T.

Remark 3.9. The function F : RN — R is in fact
the composite function fog. We have:

oFr oF
(({)Xl"”’({)XL> = JxF = Jx(fog) = JngJXgu

(3.10)
where ”x 7 denotes the usual matriz-vector product.
This is a formula for deriving composite functions.

Returning to the graph we employ the following no-
tation:
of

oU, = o, (3.11)
Obviously, 6U; = 6f = 1. For the others it is not as imme-
diate but we can see immediately that this calculation seems
to be easier to develop in reverse, which is why it will be
called backward. Let’s be more precise.
To use the formula , the calculation must be put in
this form. This is not possible with the initial graph but with
a ’layered’ version as in figure where each layer contains



3.3. COMPUTATIONAL GRAPHS 93

all the variables necessary to calculate the values of the next
layer: the last layer contains only Uy, its derivative is already
calculated. The penultimate layer contains only Us and U 4
(which propagates the value of x). We can use the composite

derivation to obtain §Us = g—LU]Z = 1, according to the formula

of Uy in table 3.1} similarly 6U1q = g, = —1.

So we continue backwards; this new layer contains U 3,
Us and Us 3. The idea is to see U; 3, Us and Us 3 as inputs,
the next layer Us and Uy 4 as intermediate variables and Uz as
the output. We then apply the composite derivation formula,

for example:
_9f  Of 9Us Of 0Upy
OUs = 505 = oUs 00, T 90L. 00

The calculation can thus continue. Pay attention to the
final calculation of §U; which will have two non-zero terms.

= 5U6-U373+0 = U373.

Ul,z =U|—— U3 =Uipf——|U1s= Ul,f;

Ulza:—»U,1:3U12

Uy=y ——|Usp=Us |—— Us =Uy + Uz o —— Us = Us x Uz 3

/

Us =2z ——|Us2=Us —— Us3="Us>

Figure 3.3: Layered computational graph of f in equation
(3.5). It was built by adding variables that will be necessary
later in the form of new trivial variables, such as Uy 2 = Un,
etc.

Remark 3.10. This ’layered’ representation introduces
additional variables, here in red, but has the advantage
of having a block structure where each block uses only the
block that directly precedes it. This solution has the advan-
tage of being rigorous but the disadvantage of complicating
the calculations.

To simplify the calculations, the idea is to keep the initial
graph but to follow the following rule: going backward from
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the output to the inputs, we calculate the derivative corre-
sponding to a variable U, only when all the derivatives dU
of the boxes U, such that an arrow between U, and U, ex-
ists have been calculated. Put simply: when everyone down-
stream of U, in the graph has its derivative calculated, then
we can also calculate the derivative 6U,. In our case, for ex-
ample, this means attempting to calculate 6U; only once dU,
and 6U; are known. The calculation results in the figure

B.4

6U1 = 5U4 ) 6U'4 + 6U7 : ?)U: aUs
= 6U30>[<J1U1 _1 U1 — Uy = 5UST SE=Us

§Us=6Us - G =Us <

Figure 3.4: Backward computational graph of f in equation

(3-5)-

3.3.3 Summary

The remarks below are in practice the most useful part of the
whole chapter. Read them carefully.

Important technique 3.11. In summary, suppose
given a (directed) forward computational graph G =
(V, E) which encodes the direct operations e.g., as our
function:

e V={U,,a=1,..n,} are all required variables

e E are the edges i.e., if (a,b) € E then variable
U, is used to compute Uy,.
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Then it is possible to construct a backward computa-
tional graph G = (V, Eg) with Eg = {(b,a)|(a,b) €
E} which encodes the computation of the derivatives.
Then, assuming that G is connected, the last vertex is
final (i.e., out-degree null) and denoting 60U, := 88%;“

then :

ou,

U, =1, Ya<n, :6U;= Y 0Us - 5

(a,b)EE

(3.12)

In particular the computation on the backward graph
starts from U, and for any other a, one calculates 0U,
only after all Uy, with (a,b) € E have been computed.

3.4 Example 1: Neural Networks

Suppose we have a training dataset €2, and we want to define
a neural network (NN) that will "learn” from this dataset,
w € Q.

We will then seek to optimize certain parameters X, so
that the output of our network is as close as possible to the
(known) output for the examples w in the dataset Q (for
all w € Q the correct output is known; we are thus in the
context of so-called supervised learning). It is therefore an
optimization problem:

arg n}}n {E, (L(X,w))} (3.13)

We propose to study the neural network defined by the
schema illustrated in figure [3.1

3.4.1 Problem Definition

The network consists of an input layer, called Input Layer, a
number of hidden layers, the Hidden Layers, and an output
layer, the Output Layer. Each of the hidden layers (Y,Y)
performs the following calculation: we take all the results
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from the previous layer, we assign them a weight (a vector
W, and a bias b). We then obtain Y and finally apply an
activation function A, to obtain Y. Finally, we apply an
output function g to the last layer. In general, we can describe
the output Y,,+1 of a given layer n + 1, relative to the output
Y,, of the previous layer n as follows:

Yn—l—l - Wn+1Yn + bn+1

Yn+1 = An+1 ({/nJrl)

We then seek to optimize the weights W as well as the biases
b, i.e., to optimize:

X = (Wi, b1, ..., Wy, by)
To minimize a loss function: £(X,w) which describes ”the
difference between the estimation by the neural network with
the parameters X, for the examples w”. This minimization

can then be performed, for example, with a stochastic gradi-
ent descent algorithm (SGD).

3.4.2 Computational Graph of the Neural Net-
work

In our example defined by the graph in Figure we have:
e An Input Layer, Yy € R*;
e A first Hidden Layer, (Y1,Y1) € R;
e A second Hidden Layer, (172, Ys) € R7;
e An Output Layer, O = g(Y2) € R.

Therefore, we have the computational graph presented in
Figure 3.5
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Figure 3.5: Forward propagation graph of the neural network
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Figure 3.6: Backward propagation graph of the neural net-

work

3.4.3 Gradient Calculation of the Loss Function

We will now focus on the backward graph of this neural net-
work as well as on the gradient calculation:

We then have (note that this is a symbolic representation,
for rigor it is necessary to employ the Jacobian matrix, see

the sidebar page :

It is then possible to compute the quadruplet:

g _ 09 9Ys _ 09 Yo OV

oWy = 0Ys OW2 — 02 gy, OWa

g _ 99 Oy Y

oby — 0Ys 6)72 0ba

99 _ Jg  9Ys _ Jg  9Ys  OVs

oWy = 9Ys 8W1 T oY 8}72 oW, - -

— 09 0Yy 0Yy 0¥y _ 99 OYy OYy OV OV
o2 9y, OY1 OWi  BYa gy, OY1 gy, OWi

Og _ 09 9V, 0V OYi Vi

0by Y 1) Q) oY1 oY1 0by

dg _Og

9y

09 99 99
OW1? Oby’ OWs? Oby

]
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which gives us the gradient of g with respect to X = (W7, b1, Wa, ba).
We can then optimize g with respect to X using gradient de-
scent.

Remark 3.12. Note that in reality, we mainly need the
derivative of the loss function L in ; it directly re-
sults from the derivative of g. Moreover, the construc-
tion of the loss function takes into account both objectives
(reproduction of known results) as well as other considera-
tions, for example generalization power; indeed, overfitting
must be prevented. To address this issue, we can introduce
a penalty in the weight update at each iteration of gradi-
ent descent, or perform dropout, i.e., temporarily remove
a neuron to force the algorithm not to overfit.

Remark 3.13. The gradient expressed above corresponds
to the proposition shown earlier: each of the partial deriva-
tives can be expressed as a sum.

To know more 3.14 (Stochastic Gradient Descent).
We recall the formula for gradient descent for a multi-
dimensional function F : RP — R, with gradient V . F:

Tn+l = Tn — ana:f (xn) o

Under certain assumptions (convezity, v, ...), the se-
quence (xp)p>1 converges to the nearest local mini-
mum.

Here, v, is also called the "learning rate” in the case
of statistical learning. In the case of high dimensions
and when the function F has the form of an average
F = E,F(x,w) as in equation , computing the
gradient at a point becomes very costly (and obtain-
ing the average requires an expensive empirical average
to calculate); this is where stochastic gradient descent
(SGD) is used. We then take, among the different gra-
dients VyF(z,w), one value (or several, but in a small
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number) randomly selected.
Tntl = Tn — YnVazF (-Tnawn) .

Several stochastic gradient descent algorithms combine
different techniques (for learning rate variation as well
as stochastic descent).

3.5 Example 2: Control Problem

We now place ourselves in the context of the SIR system,
seen previously. However, we will start with a more gen-
eral presentation by considering that we use the Explicit Eu-
ler method to solve 2’ = f(¢t,z(t),u(t)) with the function
F(z(T)) to optimize.

3.5.1 Computational Graphs

We solve this problem through the analysis of its computa-
tional graphs. Since we use the Explicit Euler method the
direct computational graph is the one in the top of the fig-
ure Of course, this graphs represents only a part of the
whole graph. The complete direct graph will include all time
steps and is presented in Figure for N = 2.

Using the usual techniques, we can compute subsequently
the backward computational graph as in figure (bottom).

3.5.2 Construction of a Discrete Version of an
Euler-Lagrange Procedure

The direct and backward computational graphs allow to se
the whole procedure as a discrete version of an Euler-Lagrange
framwork.

Consider a general situation when z(t) satisfies the ODE:
2'(t) = f(t,x(t),u(t)) At the discrete level, the EE scheme
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Figure 3.7: Description of the ”forward” mode (top image)
and ”backward” mode (bottom image) for a control problem;
the schema obtained for the adjoint state A, is an Explicit
Euler type discretization of . Although this seems to
correspond to Implicit Euler, it should be remembered that
is solved in reverse in time, which means that for ex-
ample A\, 11 is known before \,,.

can be written x,4+1 = zn + hf(tn, Tn,un). The computa-

tional graph reads, for A, = % =:0xy, :

>\n = )\nJrl + )\n+1%(tn; Tn, Un)h (314)
OF
= — = . 1
AN oy dxn (3.15)

The peculiarity of this formula is that we know the end,
namely Ay, and we must construct the other values A,. This
leads us to view A(t) as a solution of a backward-in-time
equation and thus we find ourselves solving, by an Explicit
Euler method, the equation:

of

N(t) = —%(t,x(t),u(t)))\(t). (3.16)
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_______ e

uo

Figure 3.8: Complete direct graph of the SIR system for n =
2; the orange circle represents the part that we had previously

plotted in

We also obtain a formula for the derivative:

ai = )‘n—i—lh 8f
ouy,

5 (tny T,y Up). (3.17)

In summary, the computational graph shows us that the
derivative can be obtained with the help of solving the ODE
involving A(t), which will be called the adjoint state.
This conclusion is independent of the numerical scheme
used initially to solve the ODE !!

It is also important to note that the cost of this method is
just 2 times the cost of calculating F', and thus independent of
the number N of u,, values to be optimized (to be compared

with 2NV evaluations that would be necessary if using a finite
difference formula like ([3.3))).

To know more 3.15. The relation 18 consis-
tent with a formulation of the problem as an Euler-
Lagrange type minimization; it is not a proof, rather
a wverification. The minimization can be written as
ming— ¢(¢ 2.0y F'(2(T)). We apply the Lagrange mul-
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tiplier method to the function F(xz(t)) and introduce
G:

T
G(z,u,\) = F(z(T)) _/0 (' — f(t,m,u))\(t)dt,

where A(t) is the Lagrange multiplier. The Fuler La-
grange method prescribes to set to zero the partial
derivatives of G with respect to A, © and u. As ex-
pected, the derivative with respect to the multiplier A
allows us to obtain the constraint:

oG ;o

O] =0< 2 = f(t,z,u).
The derivative with respect to the Lagrange multiplier
A(t) will allow us to link our computational graph to
the Euler-Lagrange procedure:

0G o T
da(t) _3x(t)/0 ANz — f(t, 2, u))dt

= —8f(t) [[Am]g = /OT zN — )\fdt]

;L\ Of
= X = AZE(t o(t), u(t)).

We find equation again. Thus, the computa-
tional graph allows us to obtain a discrete version of
the Euler-Lagrange procedure for our control variable.
The derivative with respect to x(T) leads to find that
X(T) should be set equal to ag(ﬁ%))

Finally, the derivative of G with respect to the control
u(t) allows to find the gradient of the whole functional

with respect to the control as in the exercise :

OF _ 9G
Ba) ~ oug) ~ B0 u®)A@). (318)

To this should be added any derivative involving di-

rectly w : for instance gfoT u(t)2dt would contribute a
term Bu(t).
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3.5.3 Problem Reminder

Let’s now apply the described procedure to our situation of
the SIR model. The problem can be represented by a sys-
tem, which we call SIR. The system is of the form 2’ =

ft,2(t), u(t))

S = —BSI/N,
I=BSI/N, —
R= ~I

with u(t) = f(t) = S the control and =z = (S,1,R) the
state. The goal is to minimize the cost of the confinement
fo ) and the number of infected people (S(0) —
S(T)) durlng the period [0,T]. In other words, we seek:

T
min 5(0) — S(T) + /O c(B(t))dt.

To find the derivative of f (t))dt with respect to 5 we
use that (assuming c(-)) is C’1 class) for any variation 63 €
L2[0,T) :

T T
| et +aswnar = [ ey
0 0
+((B(),0B()) r2p0,r + o168 20,77)-  (3-19)
This relation can be proved easily using the Taylor expansion

for ¢; by the definition of the Frechet derivative in L?[0,T]
we obtain thus :

0 T p
o5 | [ o) = ¢ e
On the other hand, the epidemic size S(0) — S(7T') is less

straightforward to differentiate because 5 does not appear
explicitly, although it is involved in this function.
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The methodology presented in can be applied ; we
introduce the adjoint states A and p solution of :

X(t) = BOIAE) — n(t)) /Ny, NT) =1,
(3.21)

W (1) = BOSEAW) — n(t) /Ny +3u(t),  p(T) =0.
(3.22)

Then %S(T) = —SI(\ — p)/N, (the equality holds as func-
tions of ).

3.6 Theoretical Appendix: Graph The-
ory

We will introduce some notions of graph theory.

Definition 3.16 (Graph). A (directed /oriented) graph is
a pair G = (V, E) consisting of:

e V a set of vertices;

e E a set of edges, E C V2, with (a,b) € E meaning
that there is an edge between a and b. If the graph is
considered oriented then the edge is from a to b.

Example 3.17. See figure for an example of a directed
graph.

If the graph is oriented, the edge (a,b) is not the same
as (b,a) (if a # b); note the it is possible for an edge/arc to
point to the node from which it originates i.e. (x,z).

Remark 3.18. An undirected graph is a pair G = (V, E)
where E C {(x,y), (x,y) € V2,2 # y} is a set of edges
that connect two different nodes together. An arc is thus
an edge with a direction. We speak of a path from one
node to another to refer to a consecutive sequence of edges
connecting the two nodes.
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Figure 3.9: Example of a oriented graph

Definition 3.19 (Connected Graph). A graph is said to
be connected if it is in one piece, i.e., for any pair of nodes
v1,v9 €V there exists a path from node vy to node vs.

Example 3.20. See figures[3.10 and for an example of

a connected or not connected graph.

B / -
ch—"(a E @ b
D —F D a
Figure 3.10: Figure 3.11:
Non-
Connected
ranh connected
grap graph

Definition 3.21. Graph without cycles. A graph without
cycles is a graph that contains no path that has the same
starting and ending node.
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The graph in Figure has several cycles (notably {A, F, D,C'}),
while the one in Figure has none.

Definition 3.22 (Node Degrees). Given an arc{z,y} con-
necting nodes x and y, we call the starting node x the source
and the ending node y the target. We then define:

e the out-degree of a node as the number of arcs that
have this node as the source;

e the in-degree of a node as the number of arcs that have
this node as the target.

A graph thus has as many in-degrees as out-degrees.
Example 3.23. In the graph of Figure[3.9:

e the out-degree of node {2} is 2, the out-degree of node
{4} is zero.

e the in-degree of node {3} is 1, the in-degree of node {2}
s 2.

e There are a total of 5 in-degrees and 5 out-degrees,
which confirms our definition: there are as many in-
degrees as out-degrees.
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3.7 Exercises

Exercise 3.1 (Finite differences of orders 3 and 4).

1. Show that
() = 2f(x+3h) —9f(z + 2fé)h—|— 18f(x+ h) — 11f(1:)+0(h3).
(3.23)
2. Find a third-order formula of the form:
oy = SEH BN LA+ R o)
(3.24)
3. Show that
o) = LM B ) 81+ f5 =) o0
(3.25)

Exercise 3.2 (Reminder : Euler-Lagrange multipliers
method ).

Find the minimum of the function x +y under the constraint
22 + y? = 1 using the method of Euler-Lagrange multipliers.

Exercise 3.3 (Euler-Lagrange multipliers: finding the
derivative).

Let f,g : R? = R be C? functions. Suppose that the equation
g(x,y) =0 has a unique solution y = Y(x) for each given x,
with Y being C*. Also suppose that for all x: V,g(x,Y(z)) #
0. Let F: R — R where F(x) = f(z,)Y(x)). We assume Y(-)
1s difficult to obtain and we want to compute the gradient
V. F(x) without using Y(-) too many times. Let L(\, x,y) =
f(z,y) + Ag(z, ).

1. Show that for every x there exists Ay such that :
VyL(Az,z,Y(x)) = VaL(Ag, 2, Y(z)) =0.  (3.26)

2. Show that : VyF(z) = V4L(Az, x, Y(x)).
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3. Generalize for functions f : R* x R®* - R, g : R" x
R™ — R"™.

Exercise 3.4 (example of computational graph).

1. Write the computational graph for the following compu-
tation: z = x+sin(x-y) +x2. Then write the backward
graph for computing the derivatives of z with respect to
x and y. Fxplicitly calculate the values of these two
graphs for x =2, y = /6.

2. Same for the function (x,y,z) — xyzex2+yz.

Exercise 3.5 (Backward mode IE, cf figure [3.7).

1. Find the formulas for forward and backward mode for
a control problem as in figure [3.7 but with an Implicit
Euler scheme.

2. Similarly, if the forward graph implements a general RK
scheme, find the ”adjoint” scheme, i.e., the one used by
the backward propagation of the adjoint state. What do
you observe?

Exercise 3.6 (computational graph of projection). Let P =
{(z,y,2)T € R® such thatx + y+ 2z = 1} C R? and 11 :
R3 — P defined for any vector v = (vi,v2,v3)T € R3 by
O(v) = v — Aw) - (1, 1,1)T where A(v) € R is the only real
number such that TI(v) € P. Letg: R3 — R be a C* function.

1. Find the formula for A\, as a function of v;

2. Write the direct computational graph that computes v —
g(I(v));

3. Write the backward computational graph that computes
the derivatives of g(Il(v)) with respect to the inputs
(components of v).
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4. Compute the derivatives forv = (1,2,3)T and g(z,y, 2)
22 +yz —2.

Reminder: for any vector a, a® denotes its transpose.

Exercise 3.7 (computational graph of softmax/cross en-
tropy). Compute the loss function for the case of cross-entropy
loss after a final “softmaz” layer (output in R3) and archi-
tecture FC/ReLU 4 —5 — 7 — 3; compute its derivatives. A

graphical description in figure [3.13

Hidden layer 2

+ activation
Hidden layer 1
Input layer + activation

%

Dimension: 4 Dimension: 5

Dimension: 7

Figure 3.12: The neural network in exercise [3.7] page

Exercise 3.8 ((”Layer Normalization”)). A part of the work
of the so-called ”Layer Normalization” layer is the computa-
tion of the standard deviation of a data sample x = (x1, ..., Ty).
It is done as follows: first, calculate the empirical mean i =
(> oh_yzk)/n, then the empirical variance v = Y _(zg —
[)?/(n—1) and finally the estimate of the standard deviation

G = /.

1. Draw the direct computational graph corresponding to
the above calculations; for each mode in the graph, ez-
plicitly specify, as in the lecture, the inputs/outputs and
the operation performed by the node.

2. Similarly, draw the backward computational graph for
the derivatives of the final output with respect to the
mputs;
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3. Compute the derivatives for n = 3, z = (1,2,4) with
the help of the direct and backward computa-
tional graphs.

3.8 Automatic differentiation lab

Exercise 3.9. Implement exercise for the case of the
SIR model in section [3.1.3 Take the values T = 150,N =
150, h = T/N S(0) = 10%, 1(0) = 10, R(0) = 0, Nytas =
S(0)+1(0)+ R(0) B = 0.5/ N, 7 = 1/3, e(8) = o/ with
co =107~

Exercise 3.10. Build and train a neural network with dense
layers as described in section|3.1.5,



Chapter 4

Stochastic Differential
Equations (SDEs)

4.1 Background on Brownian motion, mar-
tingales, integrals and stochastic pro-
cesses, Ito’s formula

For a review of stochastic calculus, see the notes from [7] from
which these results and exercises are extracted.

4.1.1 Brownian motion: definition

Definition 4.1 (real Brownian motion). Let B = B;,t > 0
be a process defined on the probability space (2, F,P) equipped
with the natural (completed) filtration of the process B, de-
noted F, such that:

1. B is a process with continuous trajectories;

2. B is a process with independent increments, meaning
that for all 0 < s < t, the random variable B, — By is
independent of Fg;

3. for all 0 < s < t, the random variable By — By follows
the normal distribution N(0,t — s).

71
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If additionally By = 0 (or By # 0), we say that B is a
standard (or non-standard) Brownian motion.

When the filtration F is given a priori, an F-adapted pro-
cess that satisfies the above conditions is called an F-Brownian
motion.

Throughout, unless explicitly stated otherwise, we assume
By =0.

Remark 4.2. Let B = By, t > 0 be an F-Brownian mo-
tion on the filtered probability space (2, F,P;F). Then B
is a Gaussian process with mean function eg(t) = 0 and
covariance operator Kp(s,t) := cov(Bs, By) = min(s,t).

We denote by B or W the Brownian motions.

4.1.2 Quadratic variation

Definition 4.3. Let t > 0 be a given real number and A :=
to=0<t; <--- <t, =t be asubdivision of the interval [0,t].
The module of the subdivision A is denoted by |A| and defined

as |A| := sup; [t; — ti—1|. For a process X;, we denote
VOLUX,A) = X () — X(ti1)|*. (4.1)
i=1

The function t — Vt(2)(X) = Hw_ﬂ) Vt(2)(X, A) < oo is
called the quadratic variation of X.

Proposition 4.4 (Quadratic variation of Brownian motion).
Let B be a Brownian motion on the probability space (Q, F,P).
Then, for allt > 0,

lm B [|Vt(2)(B, A) -] = o (4.2)

2
This can also be written as ‘/;(2)(B,A) |AL|—>0 t. We say that
ﬁ

the quadratic variation over [0,t] of the Brownian motion ex-
ists in L* and Vt(Z)(B) =t.
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Intuition 4.5. The quadratic variation sums the
squares of the oscillations of the Brownian motion. As
the time interval becomes smaller and smaller, we ob-
tain a sum of independent increments which will con-
verge to its average. This can be formalized by studying
the x? variables representing the quadratic variation of
the Brownian motion.

4.1.3 Integration of processes in £([0,7])

We consider the sets £(Q2, F,P;F;[0,7]) (simply denoted as
L([0,T])) and £2(Q, F,P;F; [0, 7)) (simply denoted as £2([0, T]))

defined by :
UOTHgdu} < ooIF’fp.s.}.

EUOTHﬁdu} <oo}.

Theorem 4.6 (Stochastic integral). There exists a unique
linear mapping I that maps any process H € L(]0,T]) to a
process Z|H| with continuous trajectories on [0,T], such that
if H is continuous and locally bounded and A™ is a sequence
of subdivisions of [0,t] with |A™ — 0, then (Riemann-Ité
sum property):

L([0,T]) := {(Ht)0§t§T7 F-adapted process

£2([0,7)) = {{Ht, 0 <t < T}, F-adapted process

t
P— lim > Hy (B, —By)= / H,dB,.  (4.3)
0

n—00
tpEA™

If additionally H € £2([0,T)), then Z[H] is a martingale.
Definition 4.7. For H € £([0,T), the process Z[H| is called
the stochastic integral or Ito integral of H with respect to the
Brownian motion B. We denote fot HydBs :=7Z[H];.

Example: exercise
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4.1.4 1t0 Process

Definition 4.8 (It6 Process). A stochastic process X is called
an Itoé process if it can be written in the form

t ¢
X: = Xo +/ o du —|—/ H,dB, (4.4)
0 0

where Xg is Fo-measurable, oz, t € Ry and Hi,t € Ry are
two F-adapted processes satisfying the integrability conditions

T T
/ lay|du < 0o P — a.s. and / |H,|>du < 0o P — a.s.
0 0

(4.5)
It is also denoted differentially as: dX; = azdt + HydBy.

@ Warning 4.9. The differential form is just a no-
tation resulting from the identity ff dXy = Xp — X,
The Ito process X is in general not differentiable as
suggested by the particular case « = 0, H = 1 where
we recover the Brownian motion.

From now on, we will denote J as the set of Itd processes
and J2 as the subset of It6 processes, X; = Xo + fg aydu +

fg H,dB, € 7 such that:

T T
E [/ |au|2du} < oo and E [/ |Hu|2du} <oo;.  (4.6)
0 0
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4.1.5 Ito Formula

Intuition 4.10. The exercise [{.1] page [99 shows the
following equality: fo 2BsdBs = 32 T, which can
also be written differentially as: de = 2BsdB;s +
ds. Therefore, the usual composite derivative formula
df(z) = f'(x)dx does not apply to f(x) = x* and
x = Bs because the term —T appears. Let’s take a
closer look: the infinitesimal increment between t and
t + At of an Ito process is of the order oAt for the
continuous part and Hyv/AtN(0,1) for the Brownian
part. For small At, it is clearly the Brownian part
that dominates. Let’s make a formal calculation for
a function f(z,y) with x = t, y = \/t in the limit of
small t:

f(t,vt) = f(0, 0)+—(0 0)\f+—(0 0)t

2f 2
5 922 aay 282\[+(t+\[)

To take into account all terms of order less than or

2
equal to t, it is necessary to include the term %g L\t ,
that is to say, to write:

F(t,Vt) = £(0,0) + (0 0)V + *(0 0)t

102 f
It is this additional term that constitutes the nowvelty
and must be taken into account. It comes from the
non-differentiability of the Brownian motion, which
also leads to the non-differentiability of t — f(t,/t)
at zero, and therefore the presence of a term of order

V't and terms \/EQ.

Theorem 4.11 (Itoé’s formula). Let f : Ry x R — R be
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a CY2 function (i.e., differentiable once in time with con-
tinuous derivative and twice in space with continuous second
derivative). Let X € J be an Ité process Xy = X0+f(f adu+

fot H,dB,. Then, the process Yy = f(t,X;) € J and

to to
F(t, Xy) :f(O,X0)+/O a{(u,xu)dw/o a—i(u,Xu)qu

1 [ro*f 2
(4.8)
or, in differential form,
(oF 0 eletf of
df (t, Xy) = { ot + oy O + H; 2 922 (t,Xt)dt—i-Ht Or (t, X¢)dB.
(4.9)

Example: Y; = X?.

4.1.6 Stochastic differential equations

Given two applications a and b we wonder if there exists an
It process X = {X;,t < 0} whose (unique) decomposition
satisfies in differential notation :

dX; = a(t, Xt)dt + b(t, Xt)dBt

See exercise [£.3] page [93] for examples of such equations ap-
pearing in mathematical finance models.

Theorem 4.12. Let T > 0 and a(-,-),b(-,-) : [0,T] x R = R
be measurable functions such that there exist constants C, L >
0 satisfying for all x,y € R, t € [0,T] :

la(t,z)| + |b(t,z)| < C(1+ |z|) (4.10)
Let Z be a random variable independent of F*° = o{Bs,s >

0} and such that
E[Z?] < .
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Then the stochastic differential equation
t t
X, =7 +/ a(s, Xs)ds +/ b(s,Xs)dBs, t €[0,717,(4.12)
0 0

or in differential notation
dX; = a(t, Xy)dt + b(t, X;)d B, (4.13)
admits a unique solution X = {Xy,t <0} such that:
1. X is continuous with respect to t;

2. X is adapted to the filtration F# generated by F; and
Z;

3. X € £%([0,T)) i.e.,:

T
EU thdt]<oo.
0

4.1.7 Framework summary

We place ourselves in a framework of a filtered probability
space (2,P, F,(F;)) and (Wy),s, is a Brownian movement
which generates the filtration (F).

We call Ito process, a stochastical process (X¢)g<;<p With
values in R such that: o

t t
P — ps Vth:Xt:Xo—i—/ sts+/ HydW,, (4.14)
0 0

or equivalently:
dX; = Kydt + Hi dWry, (4.15)

with Xy given Fp—measurable, (H;) and (K;) adapted to
(Fe), fOT |Ks|ds < oo and fOT H2ds < 00, P — ps.

When K and H depend on X we obtain Stochastic Dif-
ferential Equations (SDE) ; we recalled above the hypothesis
under which we can ensure a solution to the SDE exists. The
approximation of the solution is the subject of this chapter.
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4.2 FEuler-Maruyama and Milshtein scheme

The methods that we are going to present concern the reso-
lution of the following type of equations:

dXt = a(t, Xt)dt + b(t, Xt)th, (416)

or, in full form:
¢ t
Xt—X0+/ a(s,XS)ds—i—/ bs, Xo)dW,.  (4.17)
0 0

As in chapter 2] we keep the notations 0 = tg < t; < --- <
t, < --- <ty =T. Unless otherwise stated, we will assume
that t,41 — ¢, is constant equal to h.

Euler-Maruyama (E-M) scheme: This scheme proposes
to estimate X (¢,) by Y, verifying:

Yn+1 = Yn + a(tn» Yn)(thrl - tn) + b(tm Yn)(th+1 - th)~

Remark 4.13. When tgy1 — ty = h for all k and if we
note AW, == Wy, . =Wy, an := a(ty,Yy), by := b(t,,Ys)
then the E-M scheme is written:

Y1 =Yy + anh + by AW, Yo = X(0).

Remark 4.14. Note that a, and b, are A, -measurable
random variables, where (A¢)i>o s the filtration generated
by (Wi)e>0-

Milshtein scheme: It is given by the relation:

1
Yoi1 = Yo +anh+bn AWy + Sbabi [(AW,)* = h], Yo = X(0).

To know more 4.15. Suppose a(t,X) = aX and
b(t,X) = BX, are there any implicit schemes possi-
ble 2 A suggestion could be: Y11 =Y, +aY,1h +
BYn+1 AW, which means that Yn41 = thx—/%'
Now, this is unbounded since if & ~ N(0,1) then
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E(%) = 400, which leads to numerical problems and
instabilities. So this will not work this way. It would
therefore be better to use: Ypi1 = Y, + ahY,i1 +
BY, AW,,; For Milshtein we could use at most an im-
plicit term while keeping this term %(AW% —h) ex-
plicit.

4.3 Weak and Strong Consistency

As a reminder, for an ODE, consistency could be written in
the form: truncation error is null as h — 0, or 7(h) = o(1).
This motivates the following definition:

Definition 4.16 (Weak Consistency). A scheme that yields
(Y,)n > 1 is said to be weakly consistent if:

(W1) lmE
h—0

(W2) limE
h—0

e[ ] )] o

Theorem 4.17. Let T > 0 and af(.,.),b(.,.),V'(.,.) : [0,T] x
R — R be bounded functions. Then the Euler-Maruyama
(E-M) and Milstein (M) schemes defined earlier are weakly
consistent.

I Proof. We start with the Euler-Maruyama Scheme (EM)
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and check first the (W1) condition.

Y, -Y,
E[nﬂthn] —a,

h
_ E[Yn + anh + b, AW, — Y, |-/4tn:| Ca,
h
=F [an + bnAZVn]Atn] —an
=ap + bE [szn ’Atn:| — Qp
(since ay, b, are measurable w.r.t. Ay )
=b,E [AW”]( since AW,, L A;, ) =0. (4.18)

We now verify (W2):

— 2 2

AW,,)?
=F [ha% + 2a, AW, by, + bi( - ) \Atn] — by
E[AW?
= ha? + 2a,b,E[AW,,] + b2 [ hW”] — by

= ha2( since AW, ~ N'(0,h)) £ 0.

We now consider the Milstein Scheme (M) and start with
checking (W1). Recall that AW,, ~ N(0,h). We can

write :

Yn - Yn
Yoy, o,

bub,

5 (AW?Z — h)| A, | — an

1
= EE [anh + b, AW, +

nh 1 1
= 0 b~ E[AW,] +— bt E[AW? — h] —ay,
=0 =0

=0 (4.20)

m} B

(4.19)
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To check (W2) we compute :

v2

1 b b
= hE[(anh + b AW, + 2”(AW3 - h))2\«4tn] — b
AW, bpbl, [ AW2 —h\\?
=E|( anVh+b, ”+"”< n >>A] b2
(o =252 (7)) e
O(Vh)
AWZ 202 (AW?2 — h)? AW,
—F 2 2 n n’n n 2 b n
[anh+bnh+4 - +ab\/ﬁﬂ+
bl AW2 —h  b2Y AW2 —h
QanVh— =N + ""AWn"An]—bi
2 i vk N
V22 (AW2 —h)2 B2V [ AW?2 — h]
2 n” n n nY n n
— a2h + I + 2B | AW, ———
4 | h ] 2v'h Vh
-0
be/Q
=a’h+ " "h E[(N(0,1)? — 1)) = O(h) — 0. (4.21)
4 h—0
bounded in terms of h
O

Remark 4.18. The exact solution satisfies (W1) and
(W2), see exercise page .

Remark 4.19. The weak consistency concerns only cer-
tain functions depending on the solution, particularly the
moments.

Definition 4.20 (Strong Consistency). A scheme (Yy,)n>1 is
said to be strongly consistent if:
(F1) condition (W1) is satisfied

(F2): lim B Y1 = Yo —E[Yyiq — Yo | Ay ] — b, AW, 2| =0

Theorem 4.21. Assume a, b, a’ and b’ are bounded. Then
the Buler-Maruyama (E-M) and Milstein (M) schemes are
strongly consistent.
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Proof. a) Euler-Maruyama Scheme (E-M)

(F1) is satisfied by the previous theorem.

Verify (F2):

Yo+1 — Yo —E[Y11 — Yol AL | — 0 AW, = aph+ b, AW, —
anh —bp, AW,, =0
<~

E[Ynt1—Yn|At,]

b) Milstein Scheme (M)

(F1) is satisfied by the previous theorem.

Verify (F2):

Y1 —Yn— E[Yn+1 — Yn|¢4tn] — b, AW, = a,h+b, AW, +

Yo [AW2 — h] — anh — by AW, = “a[AW2 — h]. We

’ 2
need to show that limj_,oE [}L (%[AW% — h]) } = 0.

But since b, b’ are bounded, we obtain that

, 1 (bab, 2
lim E [h( 5 AW —h]) ]

h—0
2 2
AW,
< lim CohE Wul 4 =0 (4.22)
h—0 \/E
N——
N(0,1)

where C( is a constant and we used the fact that

9 2
E [((%) — 1> ] is a constant independent of h. [

Remark 4.22. Strong consistency implies weak consis-
tency, see exercise [{.3 page [94)

4.4 Weak and Strong Convergence

We use the same notations as before, and in particular in the
following two definitions, the time step h satisfies h = T'/N,
where N is the number of time steps to reach a given T
(N is an integer). We will write N}, to better represent this
dependence.
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Definition 4.23 (Strong Convergence). A scheme (Yy)n>1
is said to be strongly convergent of order v > 0 at time T if
there exists hg > 0 and C > 0 independent of h such that for
all h < hg:

E[|X (hN},) — Yu, || < Ch7 ( with Ny = [T/h] € N). (4.23)

Definition 4.24 (Weak Convergence). The scheme (Yy)n>1
is said to be weakly convergent of order B > 0 if there exists
ho > 0 and C > 0 independent of h such that for all h < hy,
and for all g € C’I%BH:

[E[g(X (hN))] — Elg(Yw,)]| < OB,

where Cg,@+2 is the set of functions with at most polynomial
growtfﬂ of class 23 + 2.

Example 4.25. The functions log(-) and sin(-) have at most
polynomial growth. The exponential function does not.

Example 4.26. Let W = (W;) and B = (By) be two in-
dependent Brownian motions and X; be the exact solution
of the equation dXy = 0 - dt + 1dWy, i.e., Xy = Wy, If we
propose the numerical scheme Y,11 =Y, + AB,,, we obtain
Y, = By, = Bup. Although the processes W and B are totally
independent, Y,, perfectly respects the distribution of the vari-
able Wy, , so in particular this scheme is weakly convergent
to any order v > 0. However, it is not strongly convergent to
any order.

Theorem 4.27 (Convergence of Euler-Maruyama and Mil-
stein Schemes). The Euler-Maruyama scheme converges strong-
ly of order 1/2 and weakly of order 1. The Milstein scheme
converges strongly and weakly of order 1.

I Proof. This theorem is admitted. O

LA function f is said to have at most polynomial growth if there exist
s € Nand Cs > 0 such that : |f(z)] < Cs(1+ |z]°), Yz € R.
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4.5 Integral Form Taylor for ODE

In this part, we consider an ordinary differential equation,
X/ = a(t, X¢), whose integral form is X; = Xo—i—fg a(s, Xs)ds.
We write t as an index in the previous equation. For any
sufficiently regular function f, using the equation for X we
obtain:

d 0
%f(Xt) = a(t, Xt)%f(xﬂ (4.24)

Equation (4.24]) can also be written as f'(X¢) = a - f,. This
definition of f allows us to write it in integral form

F(X0) = f(Xo) + /O Lf(X.)ds, (4.25)

where we have introduced the operator L which, for a func-
tion f, acts by L(f) = aa%(f). Let f(z) = x; equation
allows us to write Xy = X + f(f a(Xs)ds because here
L(x) = aa%(:r) =a.

To simplify our calculations, we set a = a(z), so there
is no explicit dependence on t. Similarly, it is important to
note that is valid for any function f, in particular for
f = a. In this case,

a(Xs) = a(Xo) + /08 La(Xs,)ds2

By reintroducing (|4.5)) into the definition of X;, we obtain

X =Xo+ /Ot [a(Xo) + /s La(X52)d32} ds

0

t s
= Xo +ta(Xo) + / / La(Xs,)dsads.
0o Jo

This process can be repeated as many times as desired,
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which allows us to define the Taylor formula in integral form:

F(X0) = f(Xo) + /O Lf(X.)ds

= f(Xo) +Zk,L’“ (Xo)

/// / L' f(Xs, )dsn..ds.  (4.26)

By using (4.26) for a = 1, f(z) = x, we obtain the usual
Taylor formula.
4.6 Ito-Taylor Formulas

In this section, we consider a stochastic differential equation
dX; = a(t, X¢)dt + b(t, X¢)dW;. The Ito formula,

FX) = £(X0)
t 2
# [ ot g roe) + g e s
+ [ W) g rx)aw, @.27)

leads us to introduce two operators:

0 1 0?2 0
0 _ o(X L AL L x
L7 = 8)8:1: + 2b( ) 0x?’ Lo =H S)ﬁx

Equation (4.27) can then be written as:

F(X0) = F(Xo)+ /0 (L0)(X,)ds+ /0 (LLF)(X,)dW, (4.28)

We want to find an expression for X; of order 1. Equa-
tion (4.28) remains true for any function f, especially for
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f(z) = . We thus have the stochastic differential equation
in integral form:

t t
Xt—X0+/ a(Xs)ds—ir/ b(X,)dW,
0 0

By applying (4.28)) to the functions a and b, we obtain:
Xt = Xo

+ /0 t{a(Xo)—&— /0 (L0)(X, )do + / S(Lla)(XU)de}ds—i-

0

+/0t{b(Xo)+/OS(LOb)(XU)dU+/S(L1b)(Xg)dWa}dWs.

0

Finally, we have

t t
Xt:X0+a(X0)/ ds+b(X0)/ dW,+ R
0 0

o(t) o(t/?)

We study the remainder R, in order to estimate the order
of its terms.

R:/t/S(LOa)( dads—i—// (L'a)(Xy)dWyds +

O(t?) O(t3/2)

// (L) dadW+// (L) (X,)dWydW,

t3/2)

We notice that the last term is of order 1. As a reminder, we
have

(L' (X,) = (L'b)(Xo) + / U(LOle)(Xu)du

0
+ / L) (X)W, (4.29)
0
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We will keep in ([4.29)) only the first term, L'b(X,) as we are
only interested in terms of order 1. Finally, we obtain the
Itd-Taylor formula of order 1 with remainder O(t%/2):

t t
Xy = Xo+ G(Xo)/ ds + b(Xo)/ dWs
0 0
t s
+L'(Xo) / / dW,dWs + Ry (4.30)
0 JO

Here Ry is a term of order t3/2. We can verify that the
remainder Ry contains only terms of order greater than or
equal to 3/2:

t S
RQ—/ / Loa(X, dads—i—/ / L'a(X,)dW,ds +
O(t2) t3/2)
/ / L(Xy)dodW,

O(t3/2)

///LOLb w)dudW,dWy +
///LLb VAW, dW - dW,

0(3/?)

We can see that all terms of Ry are of order greater than
1, so we have indeed found an expression for X; of order 1.

4.7 Application of Ito-Taylor to the Con-
struction of Numerical Schemes
In this section, we can attempt to approximate the solu-

tion of a differential equation through numerical calculation
using the Euler-Maruyama method. We will compute the
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terms appearing in the first-order Ito-Taylor formula in (4.30)
[tn> thrl]:

tn+1 tn+1
_mﬁlzxw+au%x/ ¢+bu@y/ aw.
tn tn
tn+ 1 tn+1
+EM&J/‘ / dWydWs + R
tn tn

By computing the integrals, we obtain:

Xty = Xt +a(Xt, ) (tnr1—tn) +0(Xt, ) (W, 4 ~W4,)+O(h),
(4.31)
which allows us to obtain the Euler-Maruyama scheme
that uses the Ito-Taylor expansion with inclusion of all terms
of order % but only some of the terms of order 1.
Continuing in the Ito-Taylor formula with the cal-
culation of L'b(X;, ); for simplification, we denote b, = b(Xy,).
Given the definition of L!, we then obtain

L'b(X;) ::b()Q%)Ei;b(Xgn), (4.32)

and therefore

tn+1 S tn+1
le(th)/ / dW,dWg = bnbil/ (Wy — Wy, )dWs.
tTL tTL tﬂ/
(4.33)

2
Wi T Integrating the previous

Note that [ WydWs =

expression, we get:

2 tnt1
UM&J:%%Fngmg (s “1 (4.34)
tn
bubl,
= 2 [ (Whiss = W, = (bnss — )| (4:35)
bub!, )
- (AW, — h), (4.36)

2
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where AW, = W;, ., — W;,. We then have the following

expression:

th+1 = th + a’(th)h’ + b(th)(th+1 - th)

bt (AW, — h) + O(*),

which justifies the expression of the Milstein scheme.

4.8

Application to the Evaluation and
Delta-Hedging of Derivative Prod-
ucts Options, Black & Scholes For-
mulas

We will briefly indicate how numerical schemes are used for
the evaluation and hedging (delta-hedging) of derivative prod-
ucts. This presentation is provided for completeness, and in-
terested readers will find a much more detailed discussion in

.

We maintain the previous notations, namely the usual
probabilistic framework, (W;) a Brownian motion, and S; an
underlying asset that satisfies, by assumption, the equation
ds—stt = udt + odWy; we say that we are operating within the
framework of a Black-Scholes model.

To know more 4.28. We do not comment here on
the question of whether or not such a model is actually
verified in reality; more precisely, reality never exactly
matches any model, but some give errors that we are
willing to manage while others do not. This is a more
general discussion that does not currently fall within
the scope of this course but should concern every prac-
tittoner.

Let C; be the price at time ¢t of a derivative product whose

payoff at maturity T° > t is given by a measurable random
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variable Fr. For technical convenience, we also assume that
E[G?] < cc. For example, G = (Sr — K), for a European

call, while G = (4 i Sidt — K) for an Asian call. It is
+

known that there exists a probability Q*, called the risk-
neutral probability, and W a Q*-Brownian motion such that

%St —rdt+odW,, S(0) = S (4.37)
t
and

C, = E [e"”(T_t)G \ft} . (4.38)

Of course, this can also be written as

e "0, = EQ° [e*’"TC'T |.7-"t], which recalls a martingale
property for the discounting C, = e "C, of C.

To understand why (again, see [7] for a more rigorous
presentation), let’s consider a self-financing portfolio II; that
finances GG, meaning Il = G. It will consist of A; units
of the underlying asset and the rest in risk-free product. Of
course, due to absence of arbitrage opportunities, it follows
that Cy = II; for all t. By the self-financing condition, we can
deduce the evolution of II;: dIly = AudSy + (I — A¢Sy)rdt
or, recalling the definition of d.S;:

dHt = Ttht + AtSt[(,U, - T’)dt + O'th].

Now, let’s denote 0, = e "I, (discounting of II;). Then, by
Ito’s formula applied to the function z — e "z, we can write
dIl; = A Spd[(u—r)dt+odW;]. Let’s now change the measure
and find Q* equivalent to P such that W = ELt+ W is a
Q*-Brownian motion. Then we will obtain dlz[t = AtS'tath;
thus under the measure Q* the process II; is an Ito process
without a dt term, hence a martingale, which justifies formula
(14.38]).

Of course, this reasoning was under the assumption that
we can find a portfolio II; that finances G, meaning that
II; = G. In fact, we can even show this, we will just outline
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the argument. We will keep the same definition of @* (which
has nothing to do with the derivative product, it’s just a
transformation involving the Brownian motion (W;)).

Let M; be the martingale defined by M; = EQ” [e_’”TG |ft]
(the fact that (M;) is a martingale follows from the proper-
ties of conditional expectation and the fact that G has a finite
second moment).

By the martingale representation theorem (which roughly
says that any martingale is an Ito process without a dt term),
there exists H; such that M; = fg H,dW, or equivalently in
integral form th = thWt = Ht [“7_7‘(% + th] .

Now we just need to reverse the operations and find that
the portfolio II; containing Aitto_ units of the underlying asset
is self-financed and finances G.

To know more 4.29. Note that the existence of such
a portfolio tells us that the risk contained in the deriva-
tive Sy can be offset (we say "hedged”) by having a
variable number Ay of units of the underlying asset (of-
ten Ay = %Ct). Or, in other words, a portfolio that
contains —1 derivative (seller) and +Ay units of the
underlying asset Sy will be neutral (we say ”delta neu-
tral” ), meaning its first-order evolution is determinis-
tic. In particular, if such a portfolio is self-financed,
it will start from 0 and end at 0 regardless of the path
taken by the underlying asset. This leads us into the
realm of “delta-hedging”, a procedure used by option
sellers who do not want to make directional bets on S
but just pocket their commission and hedge against all
other risks.

From a numerical perspective, to apply and com-
pute the price of a derivative product (let’s take a European
call option with strike K as an example, i.e., G = (Sp — K)
and t = 0):

1. simulate a large number M of realizations S;*, m =
1,...,M of S; (which follows the equation (4.37))): this
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can be done either by a direct formula after simulating
W or by numerical schemes such as Euler-Maruyama
or Milstein;

2. calculate the empirical mean ﬁe"”T Z%zl(S’r}” —K)4
which will be the option price at time 0.

4.9 Exercises

Throughout the following, we consider a stochastic differen-
tial equation (SDE)

dXt = a(t, Xt)dt + b(t, Xt)th (439)

The coefficients a and b that satisfy, at a minimum, the
conditions of the existence theorem of an It6 process, namely:

- a, b are adapted to the filtration A; of the process X;

- fOT las|ds < oo a.s., fOT |bs|2ds < 00 a.s.

Reminder: the time step here is equal to h and we denote
t, = nh. Numerical schemes will provide approximations Y,
of th .

When there is no ambiguity, we denote a,, = a(tp,Yn), by =
b(tn, Yn).

Exercise 4.1 (Riemann sums, cf. theorem page .
Let A:tg=0<t) <..<ty =T be a partition of [0,T].
1. Calculate the L? limit (if it exists) of the Riemann-type
sum

N-1
S1=>_ By (By,, — By); (4.40)
k=0

as |Al — 0.
2. Calculate the L? limit (if it exists) of the Stratonovich-
type sum

N-1

Sz = Z B% (Btlc-H - Btk) ; (4.41)
k=0
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as |Al — 0.

Exercise 4.2 (Ito’s formula). For this evercise, (X;)i>0 € Z*
and we will also admit that (Y)¢>o (defined below) is also in
7°.

1. Let Y; = log(Xy). Calculate dY; knowing that dX; =
,LLXtdt -+ O'XtdBt.

2. Let dX; = a-dt+b-dBy;. Calculate dY; where Yy = eXt.

Exercise 4.3 (Stochastic Differential Equations for Some Fi-
nancial Models). Let W = {W;,t > 0} be a standard Brown-
wan motion.

1. log-normal (Black-Merton-Scholes) model: let i, 0 € R.
Prove, using a result from the course, that the following

SDE:
dS; = puSidt + o SpdWr, S(O) =5y € R, (442)
has a unique solution. Show that this solution is

Sy = eln=o*/2troWi g (4.43)

2. Vasicek model: let a, 5,0 € R, a # 0, 0 > 0. Prove,
using a result from the course, that the following SDE:

dry = a(f —ry)dt + cdWy,r(0) =rg € R, (4.44)

has a unique solution. Show that this solution is
¢
re=roe "+ B(1—e ) + aeat/ e*dWs. (4.45)
0

3. Coz-Ingersoll-Ross (CIR) model: let a,f,0 € R, a #
0, o > 0. Determine whether the result from the course
can be used to prove that the following SDE has a unique
solution:

dry = a8 — ry)dt + or/|r|dWy, r(0) =19 > 0.(4.46)
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Exercise 4.4. (weak consistency) Suppose a is bounded: |a(t,z)| <
M Vt, x.

1/ Show that the following scheme, known as "weak FEuler
Maruyama”:

Yoi1 = Yo + altn, Vo) + b(t, Yn)&Vh (4.47)

1s weakly consistent. Here &, are independent random vari-
ables and independent of Ay, such that P(&, = £1) = 1.

2/ Generalize for other variables &,.

3/ Is the scheme strongly consistent?

Exercise 4.5. (Strong and Weak Consistency)

1. Show that for any scheme, strong consistency implies
weak consistency.

2. Show that the exact solution satisfies the conditions of
strong consistency (therefore also weak consistency).

Exercise 4.6. (Heun’s Scheme for SDEs) In this exercise,
we consider that in the coefficients a and b are inde-
pendent of time, C? functions, and a, b, and their first and
second derivatives (a', a”, V', V") are also bounded. We study
a formal generalization of Heun’s scheme

Yo = Yo + %{a(yn) + a(Yn +a(Yo)h + b(Yn)AWn) }h

1
+5{b00) + b(Ya + a(Ya)h 4+ b(YVa) AW, ) }AW,, - (4.48)
Show that this scheme is not strongly consistent for all choices
of a and b, and find for which types of coefficients the scheme
is (sufficient conditions).

Exercise 4.7 (Consistency: Definitions). Show that for equa-
tion , the definitions of consistency as SDE and as ODE
coincide if b= 0 (a and b will be assumed as smooth as nec-
essary).
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Exercise 4.8 (Order of Strong Convergence for Euler-Maruyama
Limited to 1/2). Provide an example of coefficients a and b
such that the Euler-Maruyama scheme applied to equation
has a strong convergence order strictly less than 1.0.

Exercise 4.9. In equation , we assume a, b Lipschitz,
with growth at most quadratic in X . Show that a strongly con-
sistent scheme starting from X (0) converges strongly. Apply
1t to Euler-Maruyama and Milstein schemes and show that
in these cases, the convergence order v is greater than 0.5.

Exercise 4.10 (Ito-Taylor Expansion for Milstein Scheme).
Ezplain how the additional term in Milstein compared to Euler-
Maruyama is related to the Ito-Taylor expansion.

Exercise 4.11 (Multi-step SDE Scheme). With the nota-
tions from the course, consider the SDE scheme defined by
Yor1 = Y + %anh - %an,lh + bn\/ﬁﬁn where &, are i.i.d
variables with mean m and finite variance o2, and each &,
independent of the filtration A;,. We suppose that a,b are
functions independent of time, and a,b,a’,V',a”,b" bounded.

1. Find m and o® such that the scheme is weakly consis-
tent.

2. Is the scheme strongly consistent? Justify.

Exercise 4.12 (SDE Scheme). With the notations from the
course, consider the SDE scheme defined by Y41 = Y, +
ha(Yn41) + b, AW,,. We suppose that a,b are functions inde-
pendent of time, and a,b,a’,b’,a”,b" bounded.

1. Show that the scheme is well-posed by demonstrating
that the equation Z =Y, + ha(Z) + b,AW,, admits a
unique solution for sufficiently small h.

2. Calculate E Y11 — Y| As,].

3. Does the scheme satisfy the first condition of strong
consistency? Justify.

4. Is the scheme strongly consistent? Justify.
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4.10 SDE Python lab

Exercise 4.13 (Brownian Motion). 1. Write a program that
calculates a realization of a Brownian motion Wy over
a horizon T =1 with N = 500, h = T/N. Plot this
realization.

2. Modify the previous program, without adding a ”for”
loop, to calculate M realizations of the Brownian mo-
tion Wy (same parameters). Plot M = 50 such realiza-
tions on the same plot.

3. Using Riemann-Ito sums (4.3)), calculate fOT WidWy and
compare it with the exact formula for various values of
h and by averaging over the realizations.

Exercise 4.14 (EM and M Schemes). In this exercise, we
consider the SDE dX; = 0(u— Xy)dt + odWy; Xy is called the
Ornstein—Uhlenbeck process. We choose § = 1.0, u = 10.0,
c=30,Xg=0,T=1, N =100.

1. Write a program that simulates X; using a weak Euler-
Maruyama scheme (see exercise , and plot the result
for M =100 scenarios.

2. Modify the previous program to implement the Milstein
scheme (+ plot).

3. Show numerically, by varying h and adjusting M, that
EM converges strongly to order 0.5, M to order 1, and
EM weakly to order 1 (a specific test function should be
chosen).

Exercise 4.15 (European Option Pricing). In this exercise,
we consider the SDE dS; = pSidt + 0 S;dWy (Black-Scholes
model). Here, T = 1.0, N = 255, M = 100 (number of
variations), Sp = 100., p = 0.1, 0 = 0.25, r = 0.05 (risk-free
interest rate), K = 110 (strike price).
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1. Write a program that simulates Wy, Sy (with an exact
formula); plot Sy. Calculate the option price and a con-
fidence interval around it.

2. Repeat the above steps, but with an FEuler-Maruyama
scheme for calculating S;.

In all cases, plot the results.
Hint: for the confidence interval, you can use the following function:

import numpy as np

def bootstrap-mean_confidence_interval (data, num_iterations=10000,
alpha=0.05) :

A function to compute the average and a confidence interval
around it .

Use example
data = np.array ([0.2, 0.5, 0.7, 0.8, 1.1, 1.3, 1.5, 1.8, 2.0,
2.2])

print (bootstrap-mean_confidence_interval (data))

Parameters

data : 1D array of data

num_iterations : number of bootstrap iterations , default is
10000.

alpha : confidence level , the default is 0.05.

Returns : the average and a confidence interval around it as a
tuple

n = len(data)
means = np.zeros(num-iterations)

for i in range(num_iterations):
means[i] = np.mean(np.random. choice (data, size=n, replace=
True) )

means. sort ()
lower_bound
upper_bound

= means[int (num_iterations * (alpha / 2))]
mean_estimate

m
means [int (num_iterations * (1 — alpha / 2))]
= mnp.mean(means)

return mean_estimate , (lower_bound, upper_bound)
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Chapter 5

Some solutions

5.1 Solution for exercises section 2.10]

Exercise 5.1. Solution of exercise|2.12

After ONE time step: EE scheme gives [1.1,2.23,2.94] (direct
calculations). For your information (calculations not easily
feasible), the IE scheme gives [1.114,2.256,2.946] and the CN
scheme gives [1.107,2.242,2.943].

After TWO TIME STEPS the EE scheme gives [1.213,2.483, 2.886]
(direct calculations); this allows us to identify one of the
schemes. For your information, the IE scheme gives [1.244,2.543,2.9]
and the CN scheme gives [1.228,2.511,2.893]. To identify,

one must use IE, going backwards!

5.2 ODE lab solutions, section

Exercise 5.2. Solution of exercise[2.16

# —x— coding: utf—8 —x—

import numpy as np

zmp(nt matplotlzb pyplot as plt
atplotlib n

/mutplotlzb auto

# np.sqrt (2.)*np.sqrt (2.) == 2
# False !

99
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#parameters

T=10.0 # final time

N=100 # number of time steps
h = T/N #

Uuo = 0.0

def ftzt(t,z):

# define the function entering the ODE z '(t) = f(t,z(t))
return (2.0xnp. sqrt(np.abs(z)))

def FEzplicit_Euler (h,N, ode_function ,initial_-value):

Parameters

h : time step

N : number of time steps (integer)
input-function : function to integrate
initial_-value : initial value of the ODE
Returns

List of approzimate solution obtained by Ezplicit Euler scheme
of step h.

U= [0.0]+(N+1) # creates a list on I
value 0
Ul0]=initial-value

1 elements, filled with

for ii in range(N):
U[ii+1]=U[ii]+hxode_function (iixh,U[ii])
return (U)

# define the time grid

trange = np.linspace (0,T,num=N+1,endpoint=True)

# solve by EE the ODE : wuse EE at any time step and put in a numpy
array : solution

solution = Ezplicit_Euler (h,N, ftzt ,U0)

solution2 = Ezplicit_-Euler (h,N, ftzt ,np.sqrt (2.)*np.sqrt (2.) —2.)

# plot the results

plt. figure (1)

#plt.plot(solution)

plt.plot (trange ,solution , '=r ' ,trange ,solution2 , "ob’)

plt.zlabel ("time_(t) ")

plt.ylabel ('z(t) ")

plt.legend ([ "infinite_precision_solution_xz(t)’, finite_precision._
solution_z(t)’])

Exercise 5.3. Solution of exercise|2.17,

# —x— coding: utf—8 —x—

Created on Mon Mar 8 14:30:03 2021

@author: turinici

import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint

%matplotlib inline
#%matplotlib auto

#parameters
T=100 # final time
N=250 # number of time steps



5.2.

ODE LAB SOLUTIONS

h = T/N #

S0 = 20000
10=10.

R0O=0.

y0 = [S0,10,R0]
beta=1.15

gamma=1./1.

print (’'reproduction_number=

def

def

Hs
#sair

sir_list (y,t,betaSIR ,gammaSIR) :

define the SIR function
Parameters

t : time
z : list of components of dimension

Returns

a list , wvalue of the function

S,I,R=y
ntotal=S+I+R

return [—betaSIR*SxI/ntotal ,betaSIR*S*I/ntotal—gammaSIR*I,

gammaSIR+1 ]

sir_array (y,t,betaSIR ,gammaSIR) :

like sir_list but return an array

",beta/gamma)

d

return np.array(sir(y,t,betaSIR , gammaSIR)

=sir-array

sitr=sir_list

# define the time grid
trange = np.linspace (0,T,num=N+1,endpoint=True)
solution = odeint(sir, y0, trange, args=(beta,gamma))

Ssol=solution [:,0]
Isol=solution [:,1]
Rsol=solution [:,2]

plt
plt.
plt.
plt.
plt.
plt.

plt
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt
plt.
plt.
plt
plt.
plt.

. figure (2, figsize =(4,2))

zlabel ("temps ™)

plot (trange , Ssol, '—b ' ,trange , Isol ,’
legend ([’S’, 1, R"])
tight_layout ()

savefig (sir.pdf’)

. figure (4, figsize =(7.5,2.5))

subplot (1,3,1)

zlabel ( "temps ')

plot (trange , Ssol, —b ' ,linewidth=4)
legend ([°S’, 1", 'R’])

subplot (1,3,2)

zlabel ("temps )

plot (trange ,Isol , ':r ' ,linewidth=4)

.legend ([ '1°],loc="upper_right ’)

subplot (1,3,3)
zlabel ("temps )

.plot(trange , Rsol, —g ' ,linewidth=4)

legend ([ 'R’])
savefig( 'sir3.pdf’)

:r’,trange , Rsol, —g ')

101
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#in this second part we explore the order of error of several
schemes

# TODO
# 1/ obtain the precise wvalues of X(t) for t1=T0=52 and t2=60

# if times wvalues a already in the trange just wuse:
1[52],1Is0l[52],Rsol]

#otherwise compute again with odeint

t1=52.0

TO0=t1

t2=60.0

new_-trange = [0.0,t1,t2]

new-solution = odeint(sir, y0, new_-trange, args=(beta ,hgamma),rtol
=1.e—10)

Xinit=new_solution [1]
Xend=new-solution [2]

def ftzt(t,y):
777 define the function wused by the ODE”””
return sir_array (y,t,beta ,gamma)

#this is the function appearing in the formula U-{n+1}= U.n + h \
phi(Un,...)
#Explicit Euler
def phi_function_.EE_scheme (Un, ftxt ,h,tn):
return ftxzt (tn,Un)
#Heun
def phi_-function_-Heun_scheme (Un, ftzt ,h,tn):
return 0.5x%( ftxt(tn,Un) +ftat (tn+h,Un + hxftazt (tn,Un)) )
#RKY
def phi_function-.RK/4_scheme (Un, ftzt ,h,tn):
K1 = ftzt(tn,Un)
K2 = ftat(tn+h/2.,Unth/2.%K1)
K3 = ftxt (tn+h/2.,Unth /2. «K2)
K4 = ftzt (tn+h,Un+hxK3)
return (KI1+2.xK2+2.xK3+K/}) /6.

# starting from wvalue at t1 solve numerically with EE, Heun,
compare at time T2
# the numerical and the precise values for different wvalues of h

error_list_RK4 =[]

error_list_Heun =[]

error_list_.EE =[]

hlist=[0.05, 0.01, 0.1, 0.5, 1., 2., 4.]

for h in hlist:
current_-N=np.int64 ((t2—t1)/h)
#test if t2—tl1 is really a multiple of h: assert())
#ac rt (current_.Nxh == t2—t1)
#use Xinit as initial wvalues
current . X_RK4=Xinit
current . X_EE=Xinit
current_.X_Heun=Xinit
for jj in range(current_N):
current_X_RKj=current_.X_RK/j + \
hxphi_-function_.RKj_scheme (current-X_RK/ , ftzt ,h, t1+jj*
h)

current-X_Heun=current-X_Heun + \
hxphi_function_.Heun_scheme (current_X_Heun , ftat ,h, t1+
jj*h)
current-X_EE=current.X_EE + \
h¥phi_function_-EE_scheme (current_-X_EE , ftat ,h, ti1+4jjx*h)

#error_list_Heun .append (np. abs (current_-X [0]—Xend [0]) )
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error_list_Heun .append (np.sum(np. abs (current_X_Heun—Xend) ) )
error_list_.EE .append(np.sum(np. abs (current_-X_EE—Xend) ) )
error_list_RK4 .append(np.sum(np. abs(current-X_RK/4—Xend)))

plt. figure (3, figsize =(16,8))
plt.loglog (hlist ,error_list_.EE , 'o— ', hlist ,error_list_.Heun , 'o—’,

hlist ,error_list_RK4 , 'o—",)
plt.legend ([ error_EE’, "error_Heun’, "error_-RK/’])

Exercise 5.4. Solution of exercise[2.1§

# —x— coding: utf—8 —¥—

Created on Mon Mar 8 12:12:15 202

@author: turinici : TP no. 1 :ex 2.17: stability of Ezplicit Euler
for z’(t) =L % z(t) with L = i = sqrt(—1)

With notation z = z+ixy

T z

z’ = Re(z’) = Re( i % z) = Re(ix(z+iy))= — vy

y  =Im(z’) = Im(ixz) = Im(i*(a+iy)) =
ODE equation is : [z,y] = [—y,z]

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
#%matplotlib awuto

#parameters

T=100.%2%np.pi # f[final time = 100%
N=5000 # number of time steps

h = T/N #

vo = [1.,0.]

At(t,z):

define the function entering the ODE z’(t) = f(t,z(t))

Parameters

t : time
z : list of components of dimension d

Returns
a list , wvalue of the function
T, y=2
return [—y,z]
def Ezplicit_Euler (h,N, ode_function ,initial_value):

Parameters

h : time step

number of time steps (integer)
input_function : function to integrate
initial_-value : initial wvalue of the ODE

Returns

List of approzimate solution obtained by FEzplicit Euler scheme
of step h.

U= [initial_-value [ (N+1) # creates a list on N+I1 eclements .
filled with value 0
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for ii in range(N):
Ulii+1]=[uiik+hxzk for zk,uiik in zip( ode_function (iixh,U
[ii]), Ulii])]

# iti+1]=1list (np.array (U[ii])+h*np.array(ode_function (iixh
LUlii])))
return (U)
# define the time grid
trange = np.linspace (0, T, num=N+1,endpoint=True)
# solve by EE the ODE : wuse EE at any time step and put in a numpy
array : solution

solution = Ezplicit_Euler (h,N, ftat ,U0)

solutionz = [z[0] for z in solution]
solutiony = [z[1] for z in solution]

# plot the results
plt. figure (1)
plt.subplot(2,1,1)
plt.plot(trange, solutionz , —r )
plt.zlabel ("time_(t) ")
plt.ylabel('2")
plt.legend ([ "Real(z(t)) ])
plt.subplot (2,1,2)
#plt.plot(solution)

plt.plot (trange , solutiony , —b ')
plt.zlabel ("time_(t) ")
plt.ylabel (z7)
plt.legend ([ 'Im(z(t)) ])

5.3 Backward lab exercises corrections,
section [3.§]

Exercise 5.5. Solution of exercise[3.9

# —x— coding: utf—8 —s—
Created on Mon Mar 8 14:30:03 2021

@author: turinici

import numpy as np

import matplotlib.pyplot as plt

from scipy.integrate import odeint
from scipy.interpolate import interpld

Z%matplotlib inline
#%matplotlib auto

#parameters
T=150 # final time
N=150 # number of time steps

h = T/N #
S0 = 1.e+6
10=10.
RO=0.

ntotal0=S0+I10+R0

# constant appearing in function c(beta) = cO/beta

c0=1.0
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def cost(t,beta_function):
77 implements the cost function: c(beta(t)) = cO0/beta(t)

Inputs: beta s a function, t is a number
return cO/beta_function (t)

def dcost(t,beta_function):
77 implements the derivative of the cost function: ¢ '(beta(t))

= —c0/beta(t)

Inputs: beta is a function, t is a number

return —cO/beta_function (t)**2
# test: dcost(1.,lambda t : 3.)
y0 = [S0,I10,R0]
beta=0.5
gamma=1./3.
print( reproduction_number=",beta/gamma)
def sir_list(y,t,betaSIR ,gammaSIR) :

define the SIR function
Parameters

t : time
z : list of components of dimension d

Returns

a list , wvalue of the function

S,I,R=y

ntotal=S+I+R

return [—betaSIR*SxI/ntotal ,betaSIR*SxI/ntotal—gammaSIR*I,
gammaSIR*1I |

def sir_array(y,t,betaSIR ,gammaSIR) :
777 like sir_list but return an array

return np.array(sir(y,t,betaSIR , gammaSIR)

#sir=sir_array
sir=sir_-list

# define the time grid
trange = np.linspace (0,T,num=N+1,endpoint=True)
solution = odeint(sir, y0, trange, args=(beta,bgamma))

Ssol=solution [:,0]
Isol=solution [:,1]
Rsol=solution [:,2]

#construct functions S,I,R
Sfun = interpld (trange, Ssol, fill_value=
Ifun = interpld(trange ,Isol, fill_value="

5

Rfun = interpld(trange , Rsol, fill_value="¢

Textrapolate”)

trapolate”)
ztrapolate”)

plt. figure (2)
plt.plot(trange, Ssol,trange , Isol ,trange , Rsol)
plt.legend (['S’, 1 ,’R"])
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def sir_list_-beta_function (y,t,beta-function ,gammaSIR) :

define the SIR function
Parameters

t : time
z : list of components of dimension d

Returns

a list , wvalue of the function

S,I,R=y

ntotal=S+I+R

betat=beta_function (t)

return [—betat*SxI/ntotal ,betat*«SxI/ntotal —gammaSIRx*I,gammaSIR
1]

def adjoint_list_beta_function (lambdamu,t,beta_function ,gammaSIR,
Sfunction , Ifunction , Rfunction) :

define the SIR function
Parameters

t : time
x : list of components of dimension d

Returns

a list , wvalue of the function

lambda-t , mu-t=lambdamu

betat=beta_function (t)

It=Ifunction (t)

St=Sfunction (t)

Rt=Rfunction (t)

ntotal=St+I1t+Rt

return [betatxItx*(lambda-t—mu_t)/ntotal ,betat*Stx(lambda_t—

mu_t)/ntotal+gammaSIR*mu_t |

#see how can we wuse ODEINT to solve backwards:

# example exp(2xt) : z’ =
# tmp=odeint (lambda x,t : . 10.0, [0, 0.5, 1., 1.5,
# tmp = array ([[ 1 [ 27.18281891

73.8905637 00.8

7821 .98153731]])

# we want to solve backward: give wvalue at time 2 =
545.98150083814424

# tmp2=odeint (lambda z,t : 2.%z, 5.98153781, [0, 0.5, 1., 1.5,
S 1f:r—17

betafunction =lambda t : beta

adjoint_solution = odeint(adjoint_list_beta_function , [—1.,0.],
trange [:: —1],

args=(betafunction ,gamma, Sfun , Ifun , Rfun)

lambdasol=adjoint_solution [:,0][:: —1]#in order to correspond to
trange not to trange/[::—1]

musol=adjoint_solution [:,1][:: —1]

#compute the gradient

gradientST = SsolxIsolx(lambdasol—musol)
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dcostarray=[dcost (t,betafunction) for t in trange]
gradient = dcostarray—gradientST/ntotall

plt. figure (6)

plt.subplot (8,1,1)

plt.plot(trange , gradientST)

plt.subplot(8,1,2)

plt.plot(trange , gradient)

plt.subplot (3,1,3)

plt.plot (trange ,dcostarray)

plt. figure (7)
plt.plot(trange , gradient)
plt. figure (8)
plt.plot(trange,—gradientST)

5.4 SDE exercises solutions, section 4.9

Reminder: in the calculation of conditional expectations,
the following properties are useful (A is a tribe):

a/ E(XZ|A) = ZE(X|A) if Z is measurable with respect
to A

b/ E(X|A) = EX if X is independent of A

¢/ upper bound: E(X|A) < E(|X||A)

Exercises to concern stochastic calculus. They are
corrected in the book [7, Chapter 2], a PDF version of which
is available online (PDF address: see ”Bibliography” section

on page |122)).
Exo. We verify the two properties in the definition of
bn,

weak consistency.
Atn> — an
Vh

where we used the fact that a,, and b,, are measurable with
respect to Ay, , also the fact that &, is independent of A,

and E¢, = 0. Thus,
.Atn) — an

YnJrl - Yn
EEF| ———

Yn+1 - Yn
g S L ——
(™

y > . _E<anh+bn\/ﬁfn
t - Un — - 7
" h

=an + E¢, —an =0,

2
=E0=0, (5.1)
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which gives the first bound in the definition of consistency,
with ¢(h) = 0. For the second condition:
Atn>

_ 2 2

E (Yn+1 Yn) At —F (anh + bn\/ﬁfn)

h " h
= ha? + 2a,b,VhEE, + D2EE2 = ha? + b2,

We again used E&, = 0 but also E¢2 = 1 (and of course,

the independence of &, and the measurability of ¢ and b with

respect to Ay, ). We conclude that

_ 2
E ’IE <(Y”+1 ¥o) 'Atn) — b2

2

; =E(ha?)> < h®M. (5.2)

But Mh? — 0 for h — 0, which completes the demon-
stration of weak consistency (with c¢(h) = Mh? in both esti-
mates).

2/ We notice that any sequence of independent random
variables &, with mean 0 and variance 1, independent of Ay, ,
yields the same result.

3/ It cannot be, because the second condition in the def-
inition of strong consistency would not be satisfied (indeed,
the variables &, have no relation with AW,,, thus in particular
cannot compensate them during the calculation, and we are
left with a term that does not tend towards zero as h — 0).
Exo. [4.6]

The calculations of this exercise are not quite similar to
those of the previous application for the following reason:
a<Yn + anh + bnAWn> is neither independent of A4;, nor
measurable with respect to Ay, ; indeed, the function a mixes
AW, on one hand and Yj,a,, and b, on the other hand, so,
a<Yn + aph + bnAWn) is not independent of A;, due to the
presence of Y,,,a,, and b, and is not measurable with respect
to Ay, due to the presence of AW,,. We need then to replace
the exact calculation of the conditional expectation, which we
could do before, by an approximate calculation using Taylor
formulas.
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We first note that, with the notations a, = a(Y,,), b, =
b(Yn), al, = d'(Yy), bl, = V/(Yy), a Taylor formula to order 2
gives us:

a(Yn +anh + bnAWn> = an +d, - (anh + bnAWn) +

a’(ay) )
2

2
(anh + bnAWn> for some point aj.
Similarly:
b(¥i+anh b AW, ) = by b, (b b, A, ) + 8

(anh + bnAWn)2 for some point 3.

Remark: e.g., a), is measurable with respect to A;, because
it is a function, i.e., a’(-) applied to a variable Y;, which is
measurable with respect to Ay, .

Now, we just need to perform the calculations in the same
way as before. We only omit the initial immediate calcula-
tion which uses independence and measurability with respect
to Ay, ; the reader is invited to redo it if necessary.

Y, -Y,
E<"+1” Atn> —a,

h
andih +E( 25 (anh + bnAan\Atn)

2

X ”’;ﬁ’f‘mi X E(% - (anh n Z,;LAWn>2AWn|Atn)

At this point, under the assumptions of the exercise, we can
estimate

B (YnJrl - Yn

— Q.

Atn> Can =t owm) (53)

h 2

As an example, let’s detail the treatment of the term

E(b"(8) - (anh + bnAWn>2A\Atn)
4h '

First, we need to remember that 8 depends on AW,, as well,
so b”(B,) might not be measurable with respect to Ay, (nor
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necessarily independent of Ay, ). So we will only have upper
bounds:

E(M@ﬁ)-cmh+4mAmg)3mVMA%)
20

) M2E((anh + bnAI;:)Q\AWn\

< C(Wh+Vh' + V') < C'hM?

with constants C,C’ independent of h. Returning to ,
since by, b, doesn’t necessarily tend to be small for h — 0 (in
fact, it doesn’t even depend on h), the scheme is not generally
consistent. A similar calculation shows that
2
E(% Yot = Yo = E(Vusr — Yaldi,) — baAW,[) = O(h).

(5.4)
In conclusion, the scheme is strongly (thus weakly) consistent
if and only if bb’ = 0, i.e., b is constant.
Exo. We assume a to be as regular as desired, for exam-
ple, C*° bounded with all its derivatives bounded. In the case
where b = 0, is completely deterministic and becomes
an ODE. The It6 process X; solution of no longer
depends on the randommness w. It is therefore relevant to
compare the notion of consistency for ODEs with the two
notions of consistency for SDEs. Thus, if we take a scheme
(Yy)nen that approximates the solution to and start
from a deterministic initial condition Yy = Xy € R, it is not
necessary to make it dependent on AW,, and we can write
it in the form Y,+1 =Y, + h®(tn, Yn,an, h), an = a(ty, Yy),
AW, = Wy, ., — W;,, with ® as regular as desired (for ex-
ample, C* bounded with all its derivatives bounded). Since
everything is deterministic here, the quantity ®(t,, Yy, an, h)
is independent of A;, and we obtain

E (YnJrl - Yn|Atn) = hlE (@(tThYn’ana h‘)|‘/4tn)
= hE((I)(tnaYnaanah))
= h®(tn, Yy, an, h).

Atn>
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So, the first weak consistency condition becomes

2
lim E (’hq)(t"’yn’“"’h) > —0,

h—0t h
lim ‘q)(tngynaanvh) _an‘2 = 07
h—07+

— anp

i.e., since everything is deterministic,

1.€.
lim a, — ®(tn, Yy, an, h) =0.

h—07+
Now )
an = a(ty, Yn) = X'(tn),
where X' is the unique solution to satisfying X (t,) =
Y,,. Furthermore, as X’ is C* and X (t,) = Y;,, we have in
particular that

X(t -Y, ~
(n+}ll)n — X'(ty) =an, as h — 0.
Thus,
i —®(t,,Yn,an,h) =0
Jim an (tn, Yn,an, h)
X(t Y,
= lim (an_(nﬂ)n>
h—0t h
X(t -Y,
+ <(”+}1L)” _(I)(tnaynaanah)> -0
X(t Y,
& lim M—Cb(tn,ifn,an,h)zo,
h—0t h

which indeed means that the local truncation error given in
(2.9) tends to 0 as h — 01, given Remark Similarly,

2
E (Ofnﬂhifn)‘fltn> = h2E (((I)(trmyrmana h))2|Atn)

= h2E(®(ty, Yy, an, h)?)
= h2®(tn, Yo, an, h)%
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Furthermore, b, = 0 here. Thus, the weak consistency con-
dition (W3) becomes
2
2

lim_ |h®(tn, Yo, an, h)*|” =0,

h—0t+

lim E

h—0t

<’ h2D(t,, Yy, an, h)?
h

i.e., since everything is deterministic,

i.e.
lim h2®(t,, Yy, an, h)* =0,

h—0t
which is automatically satisfied since we assumed ® to be
bounded.

For strong consistency, the first condition is identical to
the first weak consistency condition. As for the second con-
dition of strong consistency, we notice that here, by a calcu-
lation already done,

Yn+1 — Yn —E (Yn+1 — Yn|-/4tn) = hE(q)(tn, Yn, Anp, h))

Thus, since b, = 0, condition F5 is rewritten here as

h—0t+

1
lim E (h ]h@(tn,Yn,an,h)]z) =0,
i.e., since everything is deterministic,
lim = [ (b, Y, an, B)| = 0
hi{g"fﬁ’ (n) nvaru )| — Y

i.e.

lim h®(tn, Yn,an, h)*> =0,
h—0t

which is automatically satisfied since we assumed ® to be
bounded.

Thus, in this case, the weak and strong consistency con-
ditions are identical to each other and identical to the consis-
tency condition for ODEs, which is that the local truncation
error given in tends to O.
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Exo. If we were in the case of an ODE (i.e. b =0), we
know that the Euler-Maruyama scheme is equivalent to the
usual explicit Euler scheme and that the convergence order is
necessarily 1. Thus, to find a suitable example, it is necessary
to take b # 0. The simplest case would be to take b = 1
and a = 0, but in this case, the approximate solution would
unfortunately be equal to the exact solution (check it). So,
we need to look for something a bit more complicated. Let’s
take another simple case (there are surely infinitely many
others that work, perhaps in a more elementary way). Let’s
set

f(t,x) = ta.
fis C* in (t,x). Then, by the Itd formula,
of of

AF (1, W) = S (6, Wa)dt + S (£, W) dW,

10%f
T2

which can be rewritten as

(t, Wy)dt = Wydt + tdW,

d(tW, — / Wids) = tdW;.
0

Thus, if we define X; = tW; — [ Wids, Wy is a solution of
dX; = tdWy, Xo = 0.

Let’s see what happens when applying the Euler-Maruyama
scheme to this SDE, starting from Yy = 0, over the time in-
terval [0,1] (i.e. T =1 here, and thus N = }):

Yn+1 =Y, +1t, (Wt

—th) :Yn—|—7’Lh (Wt —th).

n+1 n+1

It’s very easy to solve this recurrence and deduce that

Yo =Yo+hY i(Wy=Wi_,)=h> i(W, -W;_,).
=1 =1
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Especially,

=

N -1
Yn=hY i(Wy, =Wy, ) =h > i(W, — Wi, ) +W1—Wi_p.
=1

i=1

Since we are interested in strong convergence, we look at the
error at N given by the formula

en(h) =E(|Yn — Xi|)

1 N-1

= E(|Wy_p — /0 Wads — 0y i (Wi, = Wi,_,) ).

i=1

Now, it remains to estimate this quantity. We know that
Wi, =Wy, | are all pairwise independent and follow a centered
Gaussian law with variance h. Thus, the random variables
7 (Wti — Wtifl) are also all pairwise independent and follow

a centered Gaussian law with variance i2h. Their sum

N-1
Z i (Wtz‘ - Wti—l)
=1

is therefore again a centered Gaussian with variance

_ hNiig _ LNV DEN) -11) _ (1-h)@E-h)
1=1

6 6h?

Thus, the random variable

=z

-1
| i (Wti - Wtifl) |

i=1

is a ”folded normal law” whose mean is given by

\F_ (1—h)(2—h)
Nx~ 3mh?

Using the triangle inequality, we get

1
en(h) = E(|Wi_n —/O W,ds|) — \/mh)gmh)whz.
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A Taylor expansion gives

—me-h V= 1 3 om
3mh? h 2V 2r '
We still need to estimate E(|W7_j — fol Weds|).

Thus, we deduce that
en(h) = C'(T)Vh,

for a constant C'(T) > 0 depending on T whose value
doesn’t matter. Obviously, this prohibits having ey(h) <
C"h for some C” > 0 (simply because C'(t)vh < C"h is
necessarily false for h sufficiently small by dividing each side
by vh), and thus the scheme is not of order 1 in this case.
In fact, the scheme is at best of order 1/2. Since it was
admitted in class that the Euler-Maruyama scheme was of
strong convergence order at least 1/2, we cannot improve the
Vv/h in the previous inequality.
Exo. [4.10]
With the notations from the course, we are interested in
the term
tn+h s
I=L"%X,) / / dW,dW
tn tn
of the Ito-Taylor expansion, which dominates all the remain-
der terms placed in Ry as shown in class. We recall that in
the case where b does not depend on t, L' is given by

L' :b—bb.

Moreover, the additional term in the Milstein scheme com-
pared to the Euler-Maruyama scheme is given by

J = %b(Xn)b/(Xn) ((AWn)Q - h) :

Thus, if we want to demonstrate that I = J, it suffices to
demonstrate that

tn+h S 1
/ / AW, dWs = 5 (AW,)? —h).
tn tn
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To do this, we start by noticing that

/ dWo — Ws - tha
tn

so that

tn+h s tnt+h tn+h
/ AW, dW, = WodW, — W, / AW,
tn tn tn

tn

tn+h
= / WedWg — Wy, Wy, on — Wh,) -
tn

Now, we use the Ito formula to compute the quantity d(W2).
We set g(t,z) = 22, so that d(W?) = d(g(t, By)). g is C®

and

2
991, 2) = 0, @(t,x) —00, P90 2.

Ot Ox 0z2
We then obtain
dg dg 10%g
d(Wt ) ot (Wt)dt+a (Wt)th+2 922 (Wt)dt = 2WidW+dt.

By integrating between ¢, and t,, + h, we get
tnth
W2, —WE = 2/ WedWs + (tn +h —t,).
tn
Taking into account that ¢, + h — t, = h, we deduce that
tn+h 1
/t WedWs = 5 (=h+ W2-W2).

Thus, putting together the previous calculations, we deduce
that

/ttﬁh/ dWedWs = % (=h+ Wi = W) = We, (Wein — Wa,)
% (h+ W2 ) — W2 —2W, Wy p +2WE)
% (=P + Wi + W, = 2We, Wi, i)
— % (=h+ (Wi, 4n — th)Q) ;

which was the desired result since by definition, AW, =
th+h — th.
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5.5 Solution of SDE exercises section [4.10]

Exercise 5.6. Solution of exercise [{.13

#
7

—*— coding: utf—8 —¥—

Created on Mon Apr 12 14:51:49 2021
"fi"a"uf/z or: turinict

import numpy as np

import matplotlib.pyplot as plt

#TODO implement a brownian motion

#first idea: wuse the properties of the Wt:
T=1.0

N=255

M=10#number of scenarios

dt= T/N

WO0=0#standard brownian motion

trange=np. linspace (0,T,N+1,endpoint=True)

# We know that Wt is a normal value of wvariance t
Wi=np. sqrt(trange)x*np.random.randn (N,1)

plt. figure (1)

plt.subplot(1,2,1)

plt.plot(trange [1:],WI1)

#not working because the covariance is always zero ... and not min
(s,t)

#good implementation: with increments

#another idea: wse the cummulative increments property of B.M.

dW=np. sqrt(dt)x*np.random.randn (N,M)
Wenp . zeros ((N+1,M) )

w/[o ,:]=Wo
W[1:,:]=W0tnp . cumsum (dW, 0)

plt. figure (2)
plt.plot(trange ,W)

#compute \int_0"T W_t d W_t : wusing the Riemann—Ito sums
# in fact we compute sum-n W(t_-n) (increment between $t_-n$ and
$t-n+h$)

# also compute integral minus W.T"2/2 and plot for all
scenartos

int. WdW=np. zeros_like (W)
int_WAW [0,:]=0.0

for ii in range(N):
int-WdW [ii +1,:] =int-WdW [ii ,:]+ W/[ii ,:]«=dW[ii , :]

plt. figure (3, figsize=(15,5))

plt.subplot(1,3,1)

plt.plot(trange ,int-WdW )

plt. title ("$t_\mapsto_\int_0 t_-W.u_d_W_u$’)
plt.zlabel ("t 7)

plt.subplot(1,3,2)

plt.plot(trange ,Wxx2/2—int_WdW )

plt. title ("$t_\mapsto_W_t"2/2—\int_ 0 " t_Wu_d_W_u$’)
plt.zlabel('t’)

plt.subplot(1,3,83)

plt.plot(trange ,Wekx2/2—int_WdW— trange [:, None]**2/2)
plt.title ("$t_\mapsto_W_t"2/2—t/2—\int_0 " t_Wu_d_W_u$’)
plt.zlabel ('t ")

plt.tight_-layout ()

plt.show()
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Exercise 5.7. Solution of exercises[{.14 and [{.1]]

@author: Gabrel Turinici

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm

#implementation of the Black—Scholes formula
def blsprice (Price, Strike , Rate, TimeToMaturity, Volatility ,
DividendRate=0):

Computes price of option with analytic formula.

input :

S:Price — Current price of the underlying asset.

Strike:Strike — Strike (i.e., exercise) price of the option

Rate: Rate — Amnnualized continuously compounded risk—free
rate of return owver

the life of the option, expressed as a positive decimal
number.

TimeToMaturity : Time — Time to ezpiration of the option
expressed in years.

Volatility: wvolatility

DividendRate = continuous dividend rate

output: price of a call and of a put (tuple)

if TimeToMaturity <= le—6: # the option already ecxzpired
call = np.maz(Price—Strike ,0)
put = np.maz(Strike—Price ,0)
return call , put

dl = np.log(Price/Strike)+(Rate—DividendRate + Volatility
#*x2/2.0)xTimeToMaturity ;

dl = d1/(Volatilityx np.sqrt(TimeToMaturity))

d2 = di—(Volatility*np.sqrt(TimeToMaturity))

call = Price » np.exp(—DividendRatex TimeToMaturity) * \
norm. cdf(d1)—Strike* np.exp(—Ratex TimeToMaturity) * norm.
cdf(d2)
put = Strikex np.ezp(—Ratex TimeToMaturity) * norm. cdf(—d2)\
—Price* np.ezp(—DividendRate* TimeToMaturity) » norm.cdf(—
d1)

return call , put

T=1.0

N=255

M=800#number of scenarios

dt= T/N

WO0=0#standard brownian motion

trange=np. linspace (0,T,N+1,endpoint=True)

dW=np. sqrt(dt)x*np.random.randn (N,M)
Wenp . zeros ((N+1,M) )

W0, :]=Wo
W[1:,:]=W0+np . cumsum (dW,0)

plt. figure (2)
plt.plot(trange ,W)
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S0=100.
mu=0.1
sigma=0.25
taux_r=0.05

#compute S_t with dS_-t = mu S_t dt + sigma S_t d W_t
St=np. zeros_like (W)
St[0,:]=50

for i1 in range(N):
St[ii+1,:] =St[ii,:]+ muxSt[ii,:]*dt + sigmaxSt[ii ,:]=dW[ii 6 :]

plt. figure (8)
plt.plot(trange, St)
plt. title ( 8S_t§ ")

#compute the Monte Carlo price of an option
# solve St in risk—neutral probability , denote rn_St

#compute rn_St with

# d rn_St = r rn_St dt + sigma rn_St d W_t
rn_-St=np.zeros_like (W)

rn_St[0,:]=50

for ii in range(N):
rn_St[ii+1,:] =rn_St[ii,:]+ tauz_rxrn_St[ii ,:]*dt \
+ sigmaxrn_St[ii ,:]«dW[ii , ]

#compute the price of the call

K=110

prizcall ,_ = blsprice (S0,K, tauz_r ,T, sigma)

pricMC=np . exp(—tauz_r*T)*np.mean(np.mazimum (rn_St[—1,:]—K,0) )

print (”priz_Monte_ Carlo=",prizMC)

plt.subplot (2,2,4)
plt. hist (np.ezxp(—tauz_r=T) =

np . mazimum (rn_St[—1,:]—K,0)—prizcall ,50)
plt.title ( hist_du_priz_Monte_Carlo’)

erreur-MC =pricMC—prizcall
#plt.savefig (” euler-maruyama-monte_carlo.jpg”)
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