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DISCLAIMER

Warning

What follows is a ”cultural” presentation of the reinforcement learning
theory. We present the theory as found in the literature but in particular
there is no guarantee on the performance of these procedures in the REAL
WORLD applications, be it in medicine, finance, marketing, etc.
Nothing of what follows is an invitation to use one approach or another in
a professional or personal framework, the reader is encouraged to use
her/his common sense and critical views.
In particular, the treatment of heavy tailed distributions can and do play
an important role that cannot be neglected in practice.
If in need of a particular advice on a specific application contact me
directly.
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AI and deep learning : introduction

Reminders : types of ”learning”

Left : supervised learning e.g. classification on CIFAR10 labels. (source: Tensorflow Sept 23);

Middle : generative learning (source Wikipedia Sept 2023) ; Right : reinforcement learning,

credits : https://www.youtube.com/watch?v=QilHGSYbjDQ and

https://www.youtube.com/watch?v=VMp6pq6_QjI.

• We will focus on reinforcement learning and often on ”deep
reinforcement learning”.
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AI and deep learning : introduction

Reminders : types of ”learning”

• Supervised learning : e.g. classification: the labels are given i.e. we
know the value function;

• Unsupervised learning : e.g. generative : no labels, only an objective
e.g. clustering or generate objects similar to a given set

• reinforcement learning : e.g. game play : based on the interaction
with the environment; any action executed within an environment; a
signal is received that indicates whether the action has been positive
or negative. The good actions are reinforced encouraged and bad
actions are ”punished”; note that in the beginning good/bad is not
always defined (e.g. 0.5 is good ?)
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AI and deep learning : introduction

Figure: The typical framing of a Reinforcement Learning (RL) scenario: an agent
takes actions in an environment, which is interpreted into a reward and a
representation of the state, which are fed back into the agent. Source: Wikipedia

Goal : obtain high scores by accumulating rewards
Question : how to learn i.e. how to choose the next action to take ?
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AI and deep learning : introduction

Reinforcement learning : general characteristics

• this course proposes a computational approach to learning through
the interaction with the environment
The goal of reinforcement learning is to know what to do in a given
context to maximize the reward signal.

• often the actions influence future environments

• the learner needs to DISCOVER, by trial and error, the best actions
that give best rewards

• actions influence the reward, the next situation, environment and can
have LONG TERM CONSEQUENCES

• future reward may come with huge delays (e.g. chess, go ...) so it can
be interesting to play in the long term and exchange a small
immediate reward for a larger one in the future
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AI and deep learning : introduction

Reinforcement learning : general characteristics

• sometimes it is DIFFICULT TO KNOW whether an action is good or
bad (long term consequences)

• time is important (not i.i.d !)

• the environment can be UNCERTAIN and next state not
deterministic function of the action and present state.

• often the agent needs to adapt the strategy to current environment,
not play some optimal strategy given in advance.
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Building blocks of strategies : the Multi-armed bandit

Multi-armed bandit

• the problem is to allocate limited resources (time, money, turns etc.)
among terms of a given list. Goal is to maximize expected rewards.

• Name: from slot-machines (one-armed bandit); example of goal
maximize return over n = 1000 steps.

References : [1, 2] etc.
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Building blocks of strategies : the Multi-armed bandit

Multi-armed bandit

• k-armed bandit : has k options to choose from

• Other situations: choice among medical treatments, for a series of
patients

• rewards information: each action has a random reward with a given
but unknown mean;

• the means will be called ”values” of the arms.

• Notations t : turn or time; Rt : reward at step t, At : action at step
t, A : set of possible actions

• value function q∗ : A → R is unknown; in particular
q∗(a) := E[Rt |At = a]. (note : here ”*” stands for the ”true” or
”optimal” or ”most precise”)
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Building blocks of strategies : the Multi-armed bandit

Multi-armed bandit

• Main question : HOW TO CHOOSE among the k options ???

• Idea: use some estimation Q for the value function q∗.

• the estimation will evolve in time Q = Qt , we hope Qt ' q∗

• TWO MAIN CHOICES : exploitation or exploration

• exploitation example: use action a which maximizes Qt(a) : NAME=
”greedy” . Exploitation is related to short term reward maximization.

• exploration example : choose a random choice. Exploration can
improve the long term reward but is ”costly” in the short term.
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Building blocks of strategies : the Multi-armed bandit

Multi-armed bandit

How to construct the estimate Qt for q∗ ?
First proposal : action-value methods: use actions to estimate the values

Qt(a) =
sum of rewards when action a was taken before t

number of times a was taken before t
=

∑t
`=1 R`1A`=a∑t
`=1 1A`=a

By the law of large numbers we expect Qt → q∗ when t is large.
Greedy action selection : At = arg maxa Qt(a)
Variant : mostly greedy BUT with ε probability select action at random
(to explore !!)
Such a combined strategy is called ε-greedy.
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Building blocks of strategies : the Multi-armed bandit

Multi-armed bandit : empirical evaluation

Take k = 10 with q∗ chosen from a standard normal (once for all, at the
beginning).
The behavior of the reward is also a normal centered in the (unknown to
the player) value q∗(a): see figure below.

Total steps T = 1000; total runs = M = 2000.
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Building blocks of strategies : the Multi-armed bandit

Multi-armed bandit : empirical results for the ε-greedy
strategy

Figure: Top : average reward of ”ε-greedy action-value strategy for the k-armed example.
Data is averaged over M runs. Bottom : the number of times the actions taken were indeed
optimal.
Implementation detail remark: the initial values of the actions are taken to be all zero. This
means that for ε = 0 some exploration may be done beyond the first step but this is very
limited.
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Building blocks of strategies : the Multi-armed bandit

Multi-armed bandit : computational considerations:
incremental computations

Question: how to compute efficiently Qt ?
Idea : incremental.
If rewards R1 ... Rn have been obtained for some action a (chosen n − 1

times) : Qn = R1+...+Rn−1

n−1 then the n + 1 time :

Qn+1 = R1+...+Rn
n = (n−1)Qn+Rn

n thus Qn+1 = Qn + 1
n [Rn − Qn]

This idea appears very often
NewEstimation = OldEstimation + αt · [Target − OldEstimation]
Vocabulary:
• ”Target - OldEstimation” is called an ”error”
• α = 1/n (here) is called the step size.
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Building blocks of strategies : the Multi-armed bandit

Multi-armed bandit : computational considerations:
incremental computations

Question: what if the rewards are changing in time ?
Idea: give more weight to recent values in the estimation, i.e. replace the
polynomial decay α = 1/n by some exponential decay (like in
”exponentially moving averages”).
Formula Qn+1 = Qn + α[Rn − Qn]
All terms formula: Qn+1 = (1− α)nQ1 +

∑n
`=1 α(1− α)n−`R`

Question: what properties for αn ?
Answer :

∑
` α` =∞ and

∑
` α

2
` <∞.

Comments: need to both have limited variance and also erase any error in
the initial steps; cf. also SGD convergence

Gabriel Turinici Reinforcement learning 17 / 80



Building blocks of strategies : the Multi-armed bandit

Multi-armed bandit : Python implementation pseudocode

Pseudocode : MAB

• initialize k (no. of arms), T (no. of time steps), M (no. of
realizations), ε, vector of rewards (shape T ×M)

• iterate over realizations:
I initialize (random from N (0, 1)) the true averages q∗(a), a = 1, ..., k
I initialize N(a) (as vector) to 0 and Q(a) = 0
I iterate over time steps

F draw uniformly x ∈ [0, 1];
F if x < ε then next action A is at random in the k list of actions
F if x ≥ ε then next action A = argmaxa Q(a) breaking ties at random
F update N(A) = N(A) + 1
F add reward R to the reward list R = q∗(A) +N (0, 1)
F update Q(A) = Q(A) + 1

N(A)
[R − Q(A)]

• plot mean over realization of rewards R (eventually w/r to
E[maxa q∗(a)])
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Building blocks of strategies : the Multi-armed bandit

Multi-armed bandit : optimism

The initial values Q1 have been selected at some arbitrary value, here 0.
What if we select them to a different level ?
E.g. ”optimistic” initial values 5; then, even if the full-greedy strategy will
explore more and be more successful.
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Building blocks of strategies : the Multi-armed bandit

Multi-armed bandit : optimism

TODO (implementations) : compare optimism in two settings: Q1 < 0 vs
Q1 > 0
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Building blocks of strategies : the Multi-armed bandit

Multi-armed bandit : optimize estimations by confidence
intervals
Idea: a ’bad arm’ should not be tried many times. How can one know it is
’bad’ ? If we are ”confident” that it is bad .... use confidence intervals !
• since we are maximizing, it is maybe a good idea to use the upper bound
of the confidence interval: the UCB method.
• in practice choose A that maximizes Qt(a) + c

√
ln(t)
Nt(a) (recall σ = 1)

with c a constant e.g. c = 2 (related to Hoeffding inequality /
subgaussian variables, see [2])
TODO : implementation (compare with LCB ! )
Remarks: works well, but need attention in unsteady settings; difficult to
generalize well to large state spaces (k).
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Building blocks of strategies : the Multi-armed bandit

Multi-armed bandit : gradient algorithms

We next formalize the choice of an action a as a ”preference” Ht(a) which
in technical terms gives rise to a probability law through a softmax function

P(At = a) = eHt (a)∑k
b=1 e

Ht (b)
=: πt(a)

The object πt(a) (probability to take action a) is initialized with H1 = 0.
Idea: stochastic gradient (ascent) on Ht :
Ht+1(At) := Ht(At) + α(Rt − R̄t)(1− πt(At))
For a 6= At : Ht+1(a) := Ht(a)− α(Rt − R̄t)πt(a)
The baseline R̄t = average of rewards up to time t (not including time t)
computed incrementally (cf. non stationary settings).
Idea: increase probability of action At when giving rewards higher than the
average, decrease if not.
For non selected actions : move in opposite direction.
The baseline ensures quick adaptation and makes algorithm faster.
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Building blocks of strategies : the Multi-armed bandit

Multi-armed bandit : theoretical insights into gradient
algorithms

• Perspective: stochastic optimization approach (e.g. like Stochastic
Gradient Descent 1) to maximize the expected reward
R = E[Rt ] =

∑
b q∗(b)πt(b) w/r to Ht which define πt .

• softmax derivation rule : ∇Ht(a)πt(b) = πt(b)(1b=a − πt(a))
• Recall: SGD uses a non-biased version of the gradient, possibly involving
some random variable here At

• ∇Ht(a)R = ∇Ht(a) (
∑

b q∗(b)πt(b)) =
∑

b q∗(b)πt(b)(1b=a − πt(a))
= EAt [q∗(At)(1At=a − πt(a))]
• Rt(1a=At − πt(a)) = unbiased estimator for ∇Ht(a)R because
q∗(At) = E[Rt |At ]; we use it in the SGD update of Ht+1.

1Gabriel Turinici. The convergence of the Stochastic Gradient Descent (SGD) : a
self-contained proof.
arXiv:2103.14350 [cs, math, stat], March 2021
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Building blocks of strategies : the Multi-armed bandit

Multi-armed bandit : theoretical insights into gradient
algorithms

• Next idea: minimize R or R− c is the same (cst. c independent of At)

• R − c =
∑

b(q∗(b)− c)πt(b)

• ∇Ht(a)(R− c) = ... = EAt [(q∗(At)− c)(1At=a − πt(a))]

• Choice for c ? Idea: consistency ”if we are already in the solution move
the least possible“ : c = R̄t (baseline) (e.g. take a situation with 2 or 3
actions having same q∗); can be seen as variance reduction technique
[4, 5].

• Final update formula Ht+1(a) = Ht(a) + α(Rt − R̄t)(1a=At − πt(a)) as
expected.
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Building blocks of strategies : the Multi-armed bandit

Multi-armed bandit : additional optimal baseline
considerations

Alternative view: cf. the SGD convergence proof [3], the optimal value of
the constant c will minimize EAt [‖∇HtR(At ,Ht)‖2]; we obtain, after some
computations, that (we denote R̄t = EAt [q∗(At)] =

∑
a π(a)q∗(a)):

coptimum =
(1 + ‖π‖2)R̄t − 2

∑
a π

2(a)q∗(a)

1− ‖π‖2

This cannot be computed online because requires knowledge of too many
quantities; but at start, the distribution π is uniform over the k choices
and the formula reduces to

coptimum '
(1 + 1/k)R̄t − 2R̄t/k

1− 1/k
= R̄t .
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Building blocks of strategies : the Multi-armed bandit

Multi-armed bandit : empirical effect of using baseline
Impact of using or not a baseline (the true values q∗ ∼ N (4, 1)):

Practice

Correct chatGPT code on www to implement policy gradient MAB with
baseline.

Related algo: REINFORCE which iterates between computing an episode
under a given π and updating π (step by step in time) using rewards
stored.
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MDP, Bellman
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MDP, Bellman

Finite Markov Decision Processes (MDP)

Idea: formalize the cycle Agent-Environment cycle :

Environment

Agent : St Agent : St+1 ...

action At

state St+1

reward Rt+1

Object sequencing : S0,A0,R1,S1,A1, ...
Important object p(s ′, r |s, a) := P[St+1 = s ′,Rt+1 = r |St = s,At = a]
Environment : states St ∈ S ; actions At ∈ A ...
Note: not all states s ∈ S allow all actions a ∈ A.
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MDP, Bellman

Finite Markov Decision Processes (MDP)

Definition

A Markov decision process (MDP) is a 4-tuple (S,A,P,R), where:
S is a set of states called the state space,
A is a set of actions called the action space (As are actions available from
state s ∈ S);
p(s ′, r |s, a) is the probability to go from state s to state s ′ with reward r
after having chosen action a. We denote P the whole set of probabilities p.
R(s, a, s ′) is the immediate reward (or expected immediate reward)
received from the transition from s to s ′ due to action a.
A policy function π is a (potentially probabilistic) mapping from state
space S to action space A.

One can write π(a|s) = P[At = a|St = s]
The state and action spaces may be finite or infinite, for example N, R.
Sometimes one includes γ (discount rate) into the MDP definition.
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MDP, Bellman

MDP: remarks

• for any s ∈ S and a ∈ As : p(·, ·|s, a) is a probability law
• when there is no ambiguity we only write A instead of As

• Goals are not the same as rewards ... sometimes we need to encode the
rewards to be coherent with our goals, e.g. robot, car parking, etc.
• there may be episodes or infinite horizon games
• return Gt =

∑T
k=t+1 γ

k−t−1Rk where γ is the discount rate
• important remark Gt = Rt+1 + γGt+1

• Example : pole balancing; goal: keep angle below some threshold
• state value function for policy π

vπ(s) = Eπ[Gt |St = s] = Eπ
[∑∞

k=0 γ
kRk+t+1

∣∣∣St = s
]

• the action-value function for policy π

qπ(s, a) = Eπ[Gt |St = s,At = a] = Eπ
[∑∞

k=0 γ
kRk+t+1

∣∣∣St = s,At = a
]
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MDP, Bellman

Coherence condition : Bellman equation

Theorem (Bellman equation for state value function and action-state
value function)

The following relation hold

vπ(s) = Eπ[Rt+1 + γvπ(St+1)|St = s] (1)

or, in developped form

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s ′, r |s, a)[r + γvπ(s ′)]. (2)

Similar considerations for state-action value function q :

qπ(s, a) = Eπ[Rt+1 + γvπ(St+1)|St = s,At = a]. (3)

Proof: use vπ(s) = Eπ[Gt |St = s] and qπ(s, a) = Eπ[Gt |St = s,At = a].
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MDP, Bellman

Bellman equation : gridworld example

Example : gridworld [1, chapter 3] Rules : the cells of the grid correspond to

the states of the environment. At each cell, four actions are possible: north,

south, east, and west, which deterministically cause the agent to move one cell in

the respective direction on the grid. Actions that would take the agent off the

grid leave its location unchanged, but also result in a reward of −1. Other actions

result in a reward of 0, except those that move the agent out of the special states

A and B. From state A, all four actions yield a reward of +10 and take the agent

to A′. From state B, all actions yield a reward of +5 and take the agent to B ′.

Left figure : environment, center: actions, right: state value function for
the uniform policy (γ = 0.9)
Attention, value function takes into account the future, e.g. value of A is
less than 10 and value of B more than 5; some values are negative
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MDP, Bellman

Bellman equation : gridworld example

Example : gridworld [1, chapter 3]
Left figure : environment, center: actions, right: state value function for
the uniform policy (γ = 0.9)

Exercice: check state value Bellman equation
vπ(s) = ... =

∑
a π(a|s)

∑
s′,r p(s ′, r |s, a)[r + γvπ(s ′)] for some states.

state at (1, 1) value 3.31 = 0.9 ∗ (1/4) ∗ (8.79 + 1.52 + 3.31 + 3.31)− 1/4− 1/4 ;
state at (1, 3) of value 4.43 = 0.9 ∗ 1/4(5.82 + 2.25 + 8.79 + 4.43)− 1/4;
state at (1, 2) of value 8.79 = 10 + 0.9 ∗ (−1.35)

Exercice 2 : add a constant to all rewards; how does v changes ?

Important remark : Bellman equation can be solved through a linear
system.
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MDP, Bellman

Bellman optimality equation

Theorem (Bellman’s principle of optimality; R.E. Bellman, Dynamic
Programming, 1957))

An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision

Ordering of policies π ≥ π′ iff vπ(s) ≥ vπ′(s), ∀s ∈ S.
Optimal policy : a policy better than or equal to anyone else.
optimal state value function v∗(s) = maxπ vπ(s) ∀s ∈ S
optimal action-value function q∗(s, a) = maxπ qπ(s, a) ∀s ∈ S, a ∈ As .
Rq: q∗(s, a) = E[Rt+1 + γv∗(St+1)|St = s,At = a] ∀s ∈ S, a ∈ As .
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MDP, Bellman

Bellman optimality equation

Theorem (optimal Bellman equation)

The optimal value function and state-action value function satisfy

v∗(s) = max
a∈As

E[Rt+1 + γv∗(St+1)|St = s,At = a]

= max
a∈As

∑
s′,r

p(s ′, r |s, a)[r + γv∗(s
′)] (4)

q∗(s, a) = E[Rt+1 + γ max
a′∈ASt+1

q∗(St+1, a
′)|St = s,At = a]

=
∑
s′,r

p(s ′, r |s, a)[r + γmax
a′

q∗(s
′, a′)] (5)

Rq: the equations have no π in them !
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MDP, Bellman

Bellman optimality equation

Theorem (existence for optimal policy)

There exists at least a optimal policy. All optimal policies share the same
optimal state value function v∗ and optimal action-state value function q∗.

Proof idea: recall v∗(s) = maxa∈As q∗(s, a)
• define the Bellman operator (update operator)
v 7→ v ′ = B(v) : v ′(s) = maxa∈As E[Rt+1 + γv(St+1)|St = s,At = a]

• prove B is a contraction, fixed point is an optimum
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MDP, Bellman

Bellman optimality equation

Example : gridworld [1, chapter 3]

Left figure : optimal value function, right: optimal policy (γ = 0.9)
Exercice : check that the state value function above satisfies the
optimality equation v∗(s) = maxa∈As q∗(s, a)

Gabriel Turinici Reinforcement learning 37 / 80



MDP, Bellman

Bellman optimality equation

Important remark: having v∗ or q∗ makes choosing actions easy (q∗ is

easier!)
How to find v∗ / q∗ / π∗ ?
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Policy, value iteration
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Policy, value iteration

Bellman : policy evaluation (prediction)

Goal: estimate vπ when π is given, fixed (known).
Recall vπ(s) =

∑
a∈As

π(a|s)
∑

s′,r p(s ′, r |s, a)[r + γvπ(s ′)]

• Memory consuming idea : solve linear system (deterministic setting)

• in practice: iterative procedures :

Policy evaluation

for all s ∈ S : vk+1(s) = E[Rt+1 + γvk(St+1)|St = s]
or equivalently
vk+1(s) =

∑
a∈As

π(a|s)
∑

s′,r p(s ′, r |s, a)[r + γvk(s ′)]

One can prove (in general) that vk → vπ for k →∞.
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Policy, value iteration

Bellman : policy evaluation (prediction)

Faster version : replace new value immediately upon computation

Pseudocode : fast policy evaluation

• input : π, error threshold θ

• initialize V (size of V = size of S)

• repeat
I set max error e = 0
I for any s ∈ S

F store old value v = V (s)
F assign V (s) =

∑
a∈As

π(a|s)
∑

s′,r p(s
′, r |s, a)[r + γV (s ′)]

F e = max{e, |v − V (s)|}

• until e < θ
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Policy, value iteration

Bellman : policy improvement

How to improve the policy π for which we know vπ ?
For any s ∈ S compare vπ(s) with qπ(s, a) for any a ∈ As . If larger than
vπ(s) then one should take action a.
Greedy policy : π′(s) = arg maxa∈As qπ(s, a)
Replacing π with π′ (or any other better than π) is called policy
improvement.
When several improvements are executed one after another, we obtain a
policy iteration, which is a iterative two-steps procedure: policy evaluation,
policy improvement, policy evaluation, ...
In the policy improvement step we loop over all states to see whether
improvement exists at least in one state.
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Policy, value iteration

Bellman : value iteration for estimating v∗

To find v∗ (keyword : value iteration) we can apply the Bellman operator
as many times as needed to convergence.
Note : does not need to update whole vector of values, one at a time is
enough (stochastic gradient style)
Recall v∗(s) = maxa∈A(s)

∑
s′,r p(s ′, r |s, a)[r + γv∗(s

′)]

Pseudocode : value iteration

• initialize V (size of V = size of S), error threshold θ

• repeat
I error e = 0
I for any s ∈ S :

F assign V (s) = maxa∈As

∑
s′,r p(s

′, r |s, a)[r + γV (s ′)]
F update error e = max{e, absolute change in V}

• until e ≤ θ
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Policy, value iteration

Value iteration example

Example [6, chap 17] : robot on a 3× 4 grid, reward +1 at (4, 3) (terminal
state), −1 at (4, 2) (terminal state), obstacle at (2, 2); start in (1, 1).
proba 1− e : action as planned; proba e/2 skids to left of action, e/2
skids to right of action; γ = 0.9, e = 0.2, rewards r = 0 elsewhere.

Rewards and actions :
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Policy, value iteration

Value iteration example

Iterations : from bottom left, x (y?) dimension first; NOTE: final states
are taken to have value equal to their reward. THIS IS A CHOICE (on
next slide the other convention is given too)!

0

0

k = 0

+1

-1

k = 1

+1

-1

0.72

k = 2

+1

-1

0.760.52

0.43

k = 3
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Policy, value iteration

Value iteration example

At convergence we obtain the optimal value function v∗. It can be used to
obtain the optimal strategy π∗.

+1.0

-1.0

0.28

0.85

0.57

0.48

0.74

0.43

0.64

0.57

0.49

k =∞, final states value=reward

0

0

0.31

0.94

0.64

0.53

0.83

0.48

0.72

0.63

0.55

k =∞; final states value=0

Practice

Implement value iteration.
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Monte Carlo approaches

Monte Carlo approaches

• Monte Carlo approaches: use just repeated experience
• Value prediction i.e., compute Vπ for given π: simulate many
experiences according to π, then measure reward starting from any
encountered state, compute average and output this as Vπ
• Action-state values : similar approach

• Monte Carlo control i.e., policy improvement : replace π(s) by
arg maxa q(s, a)

• Problems not all state-action pairs are visited, convergence may be slow,
...
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Reinforcement learning frameworks : Open AI Gym
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Reinforcement learning frameworks : Open AI Gym

Open AI Gym

A library for RL, contains some environments (e.g., games), helper
functions and algo.

• Methods : gym.make(); env.reset(); env.step(action): takes a step,
returns (state,reward,terminated,trucated, info)
Other methods : env.seed(), env.render(), env.close()

• Attributes : gym.Env.action_space, gym.Env.observation_space,
gym.Env.reward_range, gym.Env.metadata, gym.Env.spec,

• gym.space class: env.action_space.sample(),
env.action_space.contains(action),
• list gym environments : gym.envs.registry.values(),
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Reinforcement learning frameworks : Open AI Gym

Open AI Gym: Frozen lake

Description (cf [7, 8]) Winter is here. You and your friends were tossing around a frisbee at the park when you

made a wild throw that left the frisbee out in the middle of the lake. The water is mostly frozen, but there are a few holes where

the ice has melted. If you step into one of those holes, you’ll fall into the freezing water. At this time, there’s an international

frisbee shortage, so it’s absolutely imperative that you navigate across the lake and retrieve the disc. However, the ice is slippery,

so you won’t always move in the direction you intend.

Credits : left :

https://www.pandotrip.com/wp-content/uploads/2015/11/Chaqmaqtin-Photo-by-Matthieu-Paley2-980x711.jpg ; right

: [7].
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Reinforcement learning frameworks : Open AI Gym

Open AI Gym

Practice

Try and play, at random, one game in gym: ”FrozenLake-v1”,
”CartPole-v0”, ”MountainCar-v0”, ...

import numpy as np

import gymnasium as gym #to load the FrozenLake Environment

#this command creates the FrozenLake environment using "gym"

env = gym.make("FrozenLake-v1")

#test each one

env.reward_range

env.metadata

env.spec

env.action_space.contains(2)
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Reinforcement learning frameworks : Open AI Gym

Open AI Gym

Practice

state=env.reset()#initialize

#create table

action_size = env.action_space.n#how many actions there are

state_size = env.observation_space.n#how many states

qtable = np.zeros((state_size, action_size))

# variant : initialize uniformly over reward space

print(qtable)

#choose one of those :

action = np.argmax(qtable[0,:])#here state=0

action = env.action_space.sample()

# Take the action (a) and observe the outcome state(s’)

# and reward (r)

new_state, reward, term, trunc, info = env.step(action)
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Reinforcement learning frameworks : Open AI Gym

Open AI Gym

Practice

# install gymnasium[toy-text,atari,accept-rom-license],

# with jupyter, spyder : install pygame for nicer display

# gymnasium as of 03/2024 : use render_mode="human"

# or render_mode="rgb_array"

# env = gym.make("FrozenLake-v1",is_slippery=True)

# to play a game use repeatedly :

# new_state, reward, term,trunc, info = env.step(action)

# choose action among 0,1,2,3, then look at state with :

# env.render()

Practice

Cheating : use the Bellman iterations to compute the V/Q tables using
the code provided value_function_frozen_lake_Bellman_iter.py.
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Temporal difference learning

Time-difference learning

• Idea: combine Monte Carlo with dynamic programming (Bellman
equation), update information on value function V or state-action value Q
on the fly ...

• Can also be seen as a version of SGD ...

• Can be more reactive then Monte Carlo because updates the q/v tables
on the fly, e.g. as in online GPS-like update ETA as compared to a
posteriori updates

• in TD(0) we update current state based on difference between the
current estimate and the estimate of the next state plus the reward; in
TD(1) we use all previous states and for λ ∈ [0, 1] state weight decays
each time by a factor λ.
• Examples follow ...
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Learning strategies : Q-learning, double Q-learning, SARSA
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Learning strategies : Q-learning, double Q-learning, SARSA Q-Learning

Q-Learning

• Off-policy learning algorithm, meaning that the policy followed is not
changing, e.g. a robot with a hardwired policy that we want to improve.
The order of states presented to us is NOT our choice, but we can still
learn the optimal state-action q∗ function by using the max over the
actions when updating the candidate for q∗.

• If no policy is given one can use ε-greedy for instance (or any fixed one).

• Advantage of off-policy : can use replays from old episodes / games...

• Dis-advantage: has to compute the max over actions...
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Learning strategies : Q-learning, double Q-learning, SARSA Q-Learning

Q-Learning

Q-learning (Watkins 1989)

Qnew (St ,At)← Q(St ,At)︸ ︷︷ ︸
old value

+ α︸︷︷︸
learning rate

·

temporal difference︷ ︸︸ ︷(
Rt+1︸︷︷︸
reward

+ γ︸︷︷︸
discount factor

· max
a

Q(St+1, a)︸ ︷︷ ︸
estimate of optimal future value︸ ︷︷ ︸

new value (temporal difference target)

−Q(St ,At)︸ ︷︷ ︸
old value

)

[from Wikipedia with adaptations] 0 < α ≤ 1

Note: it the policy is not given in advance (true ”off-policy”) it can be
chosen by default e.g. ε-greedy.
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Learning strategies : Q-learning, double Q-learning, SARSA Q-Learning

Q-Learning

Q-learning pseudocode

• read input parameters α, ε > 0

• initialize all Q(s, a) (all admissible) arbitrary except for terminal
values set to 0.

• Loop over each episode
I initialize S
I loop over each step of the current episode

F choose A according to the policy, here ε-greedy (can also be a given
policy)

F take action A, observe R, S ′

F update Q(S ,A) = Q(S ,A) + α[R + γmaxa Q(S ′, a)− Q(S ,A)]
F replace S by S ′

I until S is terminal

Practice

Implement Q-learning on Frozen-Lake/ Taxi; adjust hyper-parameters.
q = 2D array of shape : (env.observation space.n,env.action space.n).
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Learning strategies : Q-learning, double Q-learning, SARSA Double / Dual Q-Learning

Double / Dual Q-Learning

• Idea: eliminate some bias coming from the maximization step which is
biased: the ”max” has a different distribution as the initial distribution
e.g. for X ,Y independent N (0, 1) :

E[max(X ,Y )] = E[X1X≥Y + Y1Y≥X ] = E[X1X≥Y − Y1X≥Y ] =

E[(X − Y )1X−Y≥0]
Z=X−Y∼N (0,2)

===== E[Z1Z≥0] = 2/
√
π > 0 =

max(E[X ],E[Y ]) = 0 !!!

• Example: suppose one measures the height of some trees which in fact
have all same height, = H. BUT measurement induces an error e
(symmetric); then max(H + e) > H!

• To avoid this bias use two measurements : one to decide which is the
tallest tree an independent one to decide its height.
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Learning strategies : Q-learning, double Q-learning, SARSA Double / Dual Q-Learning

Double Q-Learning

• Solution: double / dual Q-learning: extract max using another Q-table

Double Q-learning (van Hasselt 2011)

Q1
t+1(St ,At) = Q1

t (St ,At) + αt(St ,At)

(
Rt+1 + γ Q2

t

(
St+1, arg max

a
Q1

t (st+1, a)

)
− Q1

t (St ,At)

)
Q2

t+1(St ,At) = Q2
t (St ,At) + αt(St ,At)

(
Rt+1 + γ Q1

t

(
St+1, arg max

a
Q2

t (St+1, a)

)
− Q2

t (St ,At)

)
.

[from Wikipedia with adaptations] 0 < α ≤ 1
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Learning strategies : Q-learning, double Q-learning, SARSA Double / Dual Q-Learning

Double Q-Learning

Double Q-learning pseudocode

• read input parameters α, ε > 0

• initialize Q1(·, ·) and Q2(·, ·) as before

• Loop over each episode
I initialize S
I loop over each step of the current episode

F choose A according to the policy, here ε-greedy (can also be a given
policy) in Q1 + Q2

F take action A, observe R, S ′

F set U = 1 or U = 2 (50%/50%), denote V the other
F QU(S ,A) = QU(S ,A)+α[R+γQV (S ′, argmaxa Q

U(S ′, a))−QU(S ,A)]
F replace S by S ′

I until S is terminal

Practice

Implement Double Q-learning on Frozen-Lake.
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Learning strategies : Q-learning, double Q-learning, SARSA SARSA and variants

Deep learning strategies : SARSA and variants

On-policy : the strategy is updated as we progress towards the optimal q∗.
May require less evaluations than the standard Q-learning.

SARSA for estimating q∗

Qnew (St ,At)← Q(St ,At)︸ ︷︷ ︸
old value

+ α︸︷︷︸
learning rate

·

temporal difference︷ ︸︸ ︷(
Rt+1︸︷︷︸
reward

+ γ︸︷︷︸
discount factor

· Q(St+1,At+1)︸ ︷︷ ︸
estimate of future value︸ ︷︷ ︸

new value (temporal difference target)

−Q(St ,At)︸ ︷︷ ︸
old value

)

[from[1] and Wikipedia with adaptations] 0 < α ≤ 1
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Learning strategies : Q-learning, double Q-learning, SARSA SARSA and variants

SARSA pseudocode

• read input parameters α, ε > 0

• initialize all Q(s, a) (all admissible) arbitrary except for terminal
values set to 0.

• Loop over each episode
I initialize S
I choose A from S according to Q (e.g., ε-greedy)
I loop over each step of the current episode

F take action A, observe R, S ′

F choose A′ from S ′ according to Q (e.g., ε-greedy)
F update Q(S ,A) = Q(S ,A) + α[R + γQ(S ′,A′)− Q(S ,A)]
F replace S by S ′, A by A′

I until S is terminal

Practice

Implement SARSA on Frozen-Lake using previous (Q-learning)
implementation.

Gabriel Turinici Reinforcement learning 65 / 80



Learning strategies : Q-learning, double Q-learning, SARSA SARSA and variants

Expected SARSA

Expected SARSA for estimating q∗ [from[1, 9] and Wikipedia with
adaptations]

Q(St ,At)← Q(St ,At) +α [Rt+1 + γ
∑

a π(a|St+1)Q(St+1, a)− Q(St ,At)]
0 < α ≤ 1

Value function style : denote Vπ(St+1) :=
∑

a π(a|St+1)Q(St+1, a)
Update : Q(St ,At)← Q(St ,At) + α [Rt+1 + γVπ(St+1)− Q(St ,At)]

Expected SARSA can be used both off and on-policy : in both cases
calculation is done as an expectation value but policy π can be derived
from Q (e.g., ε-greedy) or not.

Expected SARSA : precise computations for π=Q-ε-greedy :
Vπ(S) = ε · numpy .mean(Q[S , :]) + (1− ε) · numpy .max(Q[S , :]).
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Deep learning strategies : DQN, deep SARSA and variants Deep Q-Learning

Deep Q-Learning
• can adapt better to new settings; can treat larger state spaces. High
impact paper : [10] that used same architecture to play several Atari
games.

Practice

Load ”Breakout” Atari game, ”play” some moves.

• Idea: replace the Q table by a mapping constructed, e.g. with a deep
neural network.
• There are several variants, often used is that the network constructs the
map s 7→ Q(s, a)a∈A(s) as a vector map from S to R|A|.

Image credits: https://www.geeksforgeeks.org/deep-q-learning/
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Deep learning strategies : DQN, deep SARSA and variants Deep Q-Learning

Deep Q-Learning

• Q-learning updates :

Qnew (St ,At)← Q(St ,At) + α

(
Rt+1 + γmaxa Q(St+1, a)− Q(St ,At)

)
• Loss : squared Bellman error loss:(
Rt+1 + γmaxa Q(St+1, a)− Q(St ,At)

)2
; here

yt = Rt+1 + γmaxa Q(St+1, a) is treated as a fixed ”label” (no differential
computed).
• SGD-like updates : φ network parameters Q = Qφ; notation i for (S ,A) :
• Algorithm : take some action ai to observe s ′i , ri from si , ai
φ← φ− α∂φ(Qφ(si , ai )− yi )

2 = φ− α∂φQφ(si , ai )(Qφ(si , ai )− yi )

φ← φ− α∂φQφ(si , ai )(Qφ(si , ai )− [ri + γmaxa Qφ(s ′i , ai )])

• Two problems for a SGD : there is φ also in yi ; the si , ai are not iid

Gabriel Turinici Reinforcement learning 69 / 80



Deep learning strategies : DQN, deep SARSA and variants Deep Q-Learning

Deep Q-Learning

φ← φ− α∂φQφ(si , ai )(Qφ(si , ai )− [ri + γmaxa Qφ(s ′i , ai )])
• Problem for a SGD : there is φ also in yi
• Answer: the target map is given by a non-trainable copy of the neural
network updated every ”K” iterations, i.e. use maxa Qφ′ instead of
maxa Qφ with φ′ = φ every K iterations. Qφ′ = ”target network”

• Problem for a SGD : the si , ai are not iid
• Answer: experience replay : a buffer of transitions (offline policy)
(si , ai , s

′
i , ri )

B
i=1 then sample from this batch to compute gradient. Buffer is

updated regularly with new samples (FIFO).

• other concepts : eligibility traces (... later), TD(λ)
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Deep learning strategies : DQN, deep SARSA and variants Deep Q-Learning

Deep Q-Learning

Deep Q-learning with Experience Replay and target refresh

• read input parameters ε > 0, α (learning rate), replay memory
capacity NM, memory refresh size Mr , target refresh Tr , batch size
B > Mr

• initialize Q(·, ·) at random, initialize network, target network, reset
environment etc.

• Initialize replay memory M, fill up to capacity NM (run env)

• Loop until maximum iterations reached
I add to replay buffer Mr transitions

F choose A according to the policy, here ε-greedy
F take action A, observe R, S ′

F store transition S ,A,R,S ′ inM (FIFO-style, max capacity=NM)

I sample B transitions from M
I perform a step of stochastic optimization of the quadratic Bellman

error loss (use the target network) on the sampled batch
I if iteration number = multiple of Tr update target network
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Deep learning strategies : DQN, deep SARSA and variants Deep Q-Learning

Deep Q-Learning

Practice

Using ”Atari Breakout” practice the game through a gym interface. Same
for Pong

Practice

Run the policy gradients DQN ”Pong” (Karpathy style) implementation
given.

Practice

Run the DQN ”Atari Breakout” implementation given.
- change the network structure by adding FC or Conv2D layers; which one
is more efficient ?
- test updating more often or less often the target network
- test putting more images in the observation object
- test with another Atari game

Gabriel Turinici Reinforcement learning 72 / 80



Deep learning strategies : Actor-Critic and variants
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Deep learning strategies : Actor-Critic and variants

Actor-Critic and variants
• a type of Temporal Difference(TD) approach
• two networks:

• Actor: chooses actions, responsible for finding the good policy π(·)
improves it using policy gradient,

• Critic : computes the value function V (·)
• similar in spirit to Generative Adversarial Networks (GANs)

• has several versions: Actor-Critic (AC), Advantage Actor-Critic (A2C),
Asynchronous Advantage Actor-Critic (A3C)

• for instance Asynchronous Advantage Actor-Critic (A3C) is on-policy
algorithm, can handle continuous state/action spaces, approximates the
’advantage’ A(s, a) = Q(s, a)− V (s), uses simultaneously multiple agents
(’asynchronous’) to interact with copies of the same env. Each agent
contributes to the centralized version of the networks and loads this set of
parameters periodically.
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Deep learning strategies : Actor-Critic and variants

Actor-Critic : suite

Practice

Adapt the Tensorflow tutorial on ”Actor-Critic” and run it (use the
’Cartpole’ environment).
Here: actor is a NN with 2 ouputs (the ’logits’ that will then pass a
softmax to get the strategy); the critic has one outputs (the value).
Training is done once per episode after computation of the rewards.
Site : https://www.tensorflow.org/tutorials/reinforcement_learning/actor_critic

Test with another environment.

Practice

”Simple” implementation: use DQN code to implement algo from [1, page
332 ”One-step Actor-Critic (episodic)].
Other implementations : see book [11].

Gabriel Turinici Reinforcement learning 75 / 80

https://www.tensorflow.org/tutorials/reinforcement_learning/actor_critic


Deep learning strategies : Actor-Critic and variants

Other subjects RL

• Sometimes the value function is a distribution not a value cf. QR-DQN
[12] algorithm

Practice

Adapt the code from A. Karpathy (policy gradients on ”Pong”) [13]
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Deep learning strategies : Actor-Critic and variants
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