Teacher: Gabriel TURINICI
Content
- classical portfolio mangement under historical probability measure: optimal portfolio, arbitrage, APT, beta
- Financial derivatives valuation and risk neutral probability measure
- Volatility trading
- Portfolio insurance: stop-loss, options, CPPI, Constant-Mix
- Hidden or exotic options: EFT, shorts
- Deep learning and portfolio strategies
Documents
NOTA BENE: All documents are copyrighted, cannot be copied, printed or ditributed in any way without prior WRITTEN consent from the author
Chapter name | Theoretical part | Implémentation | Results |
---|
Classical portfolio management (historical measure) | slides | Python data: CSV format and PICKLE Other data : shorter CSV (30/40) Program: statistical normality tests to fill in Program: statistical normality tests (2023 version) Program: optimal portfolio w/r to random portfolio |
|
Financial derivatives and risk neutral probability | BOOK M1 « Mouvement Brownien et évaluation d’actifs dérivés » slides: reminders for financial derivatives | Code: brownien generation, Euler-Maruyama version to correct + MC computation ; Monte Carlo option price Codes: price & delta of vanilla call and put options, (log-normal = Black-Scholes) model Code delta hedging, Bachelier model version | |
| | | |
| | | |
| | | |
Volatility trading | pdf document | Code: vol trading (another version here) | Results |
Portfolio insurance: stop-loss, options, CPPIs, Constant Mix | slides, lsections 6.2 of M1 course textbook Written notes Youtube CPPI video: part 1/2, part 2/2 Beta slippage: presentation. | Code: stop loss, CPPI, CPPI v2 Constant-Mix dataC40 | Result stop-loss, CPPI, constant-mix |
Deep learning for option pricing | | Code to fill in: — python notebook or — pure python(rename *.txt to *.py) Corrected code : python notebook | |
Tools | code exemple: download Yahoo! Finance data | | |
| | | |
Misc: | Projet (old version) | | |
Historical note: 2019/21 course name: « Approches déterministes et stochastiques pour la valuation d’options »