Statistics and dynamics of financial derivatives, M2 ISF App, 2020+

Teacher: Gabriel TURINICI

Content

  • classical portfolio mangement under historical probability measure: optimal portfolio, arbitrage, APT, beta
  • Financial derivatives valuation and risk neutral probability measure
  • Volatility trading
  • Portfolio insurance: stop-loss, options, CPPI, Constant-Mix
  • Hidden or exotic options: EFT, shorts
  • Deep learning and portfolio strategies

Documents

NOTA BENE: All documents are copyrighted, cannot be copied, printed or ditributed in any way without prior WRITTEN consent from the author

Chapter nameTheoretical partImplémentationResults
Classical portfolio management
(historical measure)
slidesPython data: CSV format and PICKLE
Other data : shorter CSV (30/40)
Program: statistical normality tests to fill in
Program: statistical normality tests (2023 version)
Program: optimal portfolio w/r to random portfolio
optimalCAC40 30_p5optimalCAC40 30_p15
optimalCAC40 30_p30
Financial derivatives and risk neutral probabilityBOOK M1 « Mouvement
Brownien et évaluation d’actifs dérivés »
slides: reminders for financial derivatives
Code: brownien generation,
Euler-Maruyama version to correct + MC computation ;
Monte Carlo option price
Codes: price & delta of vanilla call and put options, (log-normal = Black-Scholes) model
Code delta hedging, Bachelier model version
Volatility tradingpdf documentCode: vol trading (another version here)Results
Portfolio insurance:
stop-loss, options,
CPPIs, Constant Mix
slides,
lsections 6.2 of M1 course textbook
Written notes
Youtube CPPI video:
part 1/2, part 2/2
Beta slippage: presentation.
Code: stop loss, CPPI, CPPI v2
Constant-Mix
dataC40
Result stop-loss, CPPI,
constant-mix
Deep learning for option pricingCode to fill in:
python notebook
or
— pure python(rename *.txt to *.py)
Corrected code : python notebook
Toolscode
exemple: download Yahoo! Finance data
Misc:Projet (old version)

Historical note: 2019/21 course name: « Approches déterministes et stochastiques pour la valuation d’options »

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *