Analyse numérique: évolution (M1 Math, Université Paris Dauphine – PSL, 2005-23)

Responsable de cours: Gabriel TURINICI
Contenu:
1 Introduction
2 EDO
3 Calcul de dérivée et contrôle
4 EDS
Bibliographie: poly distribué

Documents de support de cours, autres documents

NOTA BENE: Tous des documents sont soumis au droit d’auteur, et ne peuvent pas être distribués sauf accord préalable ECRIT de l’auteur.

Supports de cours:   livre « Simulations numériques des problèmes dépendant du temps: appliquées à l’épidémiologie, l’intelligence artificielle et les finances« 

 


VERSION 2020/21

Statistiques et dynamique des produits dérivés, M2 ISF App, 2020+

Responsable: Gabriel TURINICI

Contenu

  • probabilité historique (gestion de portefeuille classique), portefeuilles optimaux, beta, arbitrage, APT
  • Valuation de produits dérivés et probabilité risque neutre
  • Trading de volatilité, volatilité locale
  • Assurance du portefeuille: stop-loss, options, CPPIs, Constant Mix
  • Options exotiques ou cachées: ETF short, etc.

Documents (support de cours, autres documents, …)

NOTA BENE: Tous des documents sont soumis au droit d’auteur, et ne peuvent pas être distribués sauf accord préalable ECRIT de l’auteur.

Nom chapitrePartie théoriqueImplémentationRésultats
Gestion classique
de portefeuille
(proba historique)
slidesData python: format CSV et format PICKLE
Autres données : CSV court (30/40)
Programme: tests statistiques de normalité (version 2023)
(version précédente).
Programme: portefeuille optimal vs. pris au hasard,
version 2023 (versions anciennes: v1, v2 )
optimalCAC40 30_p5optimalCAC40 30_p15
optimalCAC40 30_p30
produits dérivés et
probabilité risque neutre
livre du cours de M1 « Mouvement
Brownien et évaluation d’actifs dérivés »
slides: rappels dérivées
Code: génération de brownien,
calcul Monte Carlo d’options ; autre version
Codes: prix et delta des options vanilles
(Black & Scholes)
Code delta hedging, version Bachelier
Trading de volatilitédocument pdfCode: trading de volatilité (ancienne version)Résultats
Assurance du portefeuille:
stop-loss, options,
CPPIs, Constant Mix
slides,
livre du cours de M1, sections 6.2 ;
Notes manuscrites
Vidéo Youtube sur le CPPI:
partie 1/2, partie 2/2
Beta slippage: présentation.
Code: stop loss, code CPPI, code CPPI v2
code Constant-Mix
dataC40
Résultat stop-loss, résultat CPPI,
résultat constant-mix
Divers: Projet

Note historique: nom du cours 2019/21: « Approches déterministes et stochastiques pour la valuation d’options »

4th J.P. Morgan Global Machine Learning Conference, Paris, Nov. 29, 2022

Invited joint talk « A few key issues in Finance that Machine Learning is Helping Solve » with Pierre Brugiere presented at the 4th JP Morgan Global Machine Learning conference held in Paris, Nov 29 2022

Talk materials: slides ,link to the associated paper.

Round table at the Dauphine Digital Days

Intervention at the round table « Tools, issues and current practice in media boards » at the Dauphine Digital Days held Nov 21-23 2022 at the Université Paris Dauphine – PSL, Paris, France.

Video (Youtube)

Executive summary: software in general and IA is used in many repetitive tasks in media (grammar correction, translation, data search, paper writing when the format is known as ‘trading day report’ or ‘election report’. But same techniques can also be used for more creative tasks, cf. craiyon,(try with « windy day in Paris »), singer, Midjourney gallery (paper on a prize won).

This opens the way to « deep fake » creation ex. youtube deepfake, which is the creation of objects that are fake but that pretend to be true. Deep fakes can and have been used to do harm and we cannot ignore it. Note that fake objects can still impact the real world (rumors can affect people and even the stock market and bansk, etc). But how to distinguish a ‘real’ object from a ‘fake’ one ? Difficult task and not sure the technology can solve it entirely. Some regulation is necessary, see our deep fakes repport. But ultimately this is within our hands and as always can be tacked with a ounce of good will.

Conference badge 🙂

Adaptive high order stochastic descent algorithms, NANMAT 2022 conference

This is a talk presented at the Numerical Analysis, Numerical Modeling, Approximation Theory (NA-NM-AT 2022) conference, Cluj-Napoca, Romania, Oct 26-28 2022

Talk materials: the slides of the presentation.

Abstract: motivated by statistical learning applications, the stochastic descent optimization algorithms are widely used today to tackle difficult numerical problems. One of the most known among them, the Stochastic Gradient Descent (SGD), has been extended in various ways resulting in Adam, Nesterov, momentum, etc. After a brief introduction to this framework, we introduce in this talk a new approach, called SGD-G2, which is a high order Runge-Kutta stochastic descent algorithm; the procedure allows for step adaptation in order to strike a optimal balance between convergence speed and stability. Numerical tests on standard datasets in machine learning are also presented together with further theoretical extensions.

Cours Deep Learning, M2 ISF App, 2020+

Responsable: Gabriel TURINICI (voir aussi les interventions de C. Vincent)


Contenu:
1/ Deep learning : applications majeures, références, culture
2/ Types d’approches: supervisé, renforcement, non-supervisé
3/ Réseaux neuronaux: présentation des objets: neurones, opérations, fonction loss, optimisation, architecture
4/ Focus sur les algorithmes d’optimisation stochastique et preuve de convergence de SGD
5/ Réseaux convolutifs (CNN) : filtres, couches, architectures
6/ Technique: back-propagation, régularisation, hyperparamètres
7/ Réseaux particuliers: réseaux récurrents (RNN) et LSTM; réseaux génératifs (GAN, VAE)
8/ Environnements de programmation pour réseaux neuronaux: Tensorflow, Keras, PyTorch et travail sur les exemples vus en cours

9/ Si le temps permet: NLP: word2vec and Glove: exemples d’utilisation : femme-homme+roi = reine


Document principal pour les présentations théoriques
(aucune distribution n’est autorisée sans accord ECRIT de l’auteur)
poly du cours de M1 – évolution (pour back-propagation)
Code approximation de fonctions par NN : version notebook, version py
Resultats (approximation et convergence)

Le même après 5 fois plus d’époques
Référence « officielle » du code: https://doi.org/10.5281/zenodo.7220367
Preuve convergence SGD (version francaise)
SGD convergence proof (english version)
Implementation keras/Iris Autres implémentations:
exemple « à la main » sans Keras ni tf ni pytorch : couches denses (bd=iris)
– autres implementations : cf. doc.


VERSIONS 2020/22

NOTA BENE: Tous des documents sont soumis au droit d’auteur, et ne peuvent pas être distribués sauf accord préalable ECRIT de l’auteur.
petit sondage (8 min) sur l’IA et médecine: répondre ICI.
Document principal de présentation: courspoly du cours de M1 – évolution (pour back-propagation)
Preuve convergence SGD (FR)Preuve convergence SGD (anglais)
Implementation keras/Iris Autres implementations: cf. doc.

Gestion de risques et portefeuille M2 ISF P20 – P22

Responsable: Gabriel TURINICI

Contenu Rappels du cadre classique: critère moyenne-variance, Markowitz, CAPM / MEDAF

En fonction du temps: introduction à l’allocation tactique à travers l’analyse et les indicateurs techniques

Bibliographie

  • Z. Bodie, A. Kane A.J. Marcus « Investments » McGraw Hill 7th Edition 2008
  • J.C. Hull « Options, futures and other derivatives », Pearson Prentice Hall 2006, 6th edition
  • R.B. Litterman « Mordern investment management: an equilibrium approach », Goldman Sachs 2003
  • R. Portait, P. Poncet « Finance de marché » Dalloz 2008
  • P. Wilmott « Paul Wilmott introduces quantitative finance » John Wiley & and Sons, 2007

Documents (support de cours, autres documents, …)

NOTA BENE: Tous des documents sont soumis au droit d’auteur, et ne peuvent pas être distribués sauf accord préalable ECRIT de l’auteur.

pour théorie de gestion de portefeuille
« actions » classique
(proba historique)
livre du cours de M1 Mouvement
Brownien et évaluation d’actifs dérivés
Data python: format CSV et format PICKLEProgramme: tests statistiques de normalité.

Programme : portefeuille optimal vs. portefeuilles au hasard (version 2022) (version 2021)

Pareil mais avec « softmax »
optimalCAC40 30_p5optimalCAC40 30_p15optimalCAC40 30_p30
Documents: rappels théorie classique produits dérivés (options)Code simulations scénarios Brownien / prix: version 2022, (version 2021), calcul Monte Carlo d’options ; autre version

Codes: prix et delta des options vanilles (Black & Scholes)
Code delta hedging: version 2022, version 2021
Trading de volatilité

ref: cf. section 6.1.2 du cours M1 (poly pdf non-distributable ici)

code trading volatilité : version 2022/23 ,version 2021-22 (version ancienne)
Résultats exécutionExplication théorique: cf. poly ou document pdf
Code: stop loss (P23) (version P22), code CPPI, code CPPI v2
code Constant-Mix
dataC40, code Ornstein-Uhlenbeck+CM

Résultat stop-loss, résultat CPPI,
résultat constant-mix
Théorie
slides,
livre du cours de M1, sections 6.2 ;
Notes manuscrites
Vidéo Youtube sur le CPPI: partie 1/2, partie 2/2
Beta slippage: présentation.
Projet

Autres ressources pour le cours :

Algorithms that get old : the case of generative deep neural networks, LOD 2022 conference

This is a talk presented at

The 8th International Online & Onsite Conference on Machine Learning, Optimization, and Data Science – September 18 – 22, 2022 – Certosa di Pontignano, Siena – Tuscany, Italy

Talk materials: the slides of the presentation.

Workshop on « Models, Human Behaviour and Infectious Diseases », Institut Pasteur, Paris, May 23rd 2022

Workshop on « Models, Human Behaviour and Infectious Diseases » of the Coordinated Action on Modelling of Infectious Diseases, Institut Pasteur, Paris May 23rd, 2022

Slides of the talk « From vaccination to lock-down compliance: Mean Field Games approaches to behavioral epidemiology »

Cours Reinforcement Learning, M2 ISF App, 2021-2022

Responsable: Gabriel TURINICI


1/ Introduction au reinforcement learning
2/ Formalisme théorique : « Markov decision processes » (MDP), function valeur ( équation de Belman et Hamilton- Jacobi – Bellman) etc.
3/ Stratégies usuelles, sur l’exemple de “multi-armed bandit”
4/ Stratégies en deep learning: Q-learning et DQN
5/ Stratégies en deep learning: SARSA et variantes
6/ Stratégies en deep learning: Actor-Critic et variantes
7/ Implémentations Python variées
8/ Perspectives.


Document principal pour les présentations théoriques: (aucune distribution n’est autorisée sans accord ECRIT de l’auteur)

Code: MAB , MAB v2.,

Gym : entrainement avec « Frozen-Lake »

Q-Learning : avec Frozen Lake, version python ou version notebook

Deep Q Learning : jouer avec gym/Atari-Breakout: version python ou version notebook

apprendre avec gym/Atari-Breakout: version python ou version notebook

Projets : cf. Teams