Cours Deep Learning, M2 ISF App, 2020-2021

Responsable: Gabriel TURINICI, Claude VINCENT

Contenu: introduction, SGD, CNN, GAN, VAE … + TP sour tout ça.


Nouveau: petit sondage (8 min) sur l’IA et médecine: répondre ICI.

Documents (support de cours, autres documents, …)

NOTA BENE: Tous des documents sont soumis au droit d’auteur, et ne peuvent pas être distribués sauf accord préalable ECRIT de l’auteur.

Présentation courspoly du cours de M1 – évolution (pour back-propagation)
Preuve convergence SGD (FR)Preuve convergence SGD (anglais)

Approches déterministes et stochastique pour la valuation d’options, M2 ISF App, 2020-21

Responsable: Gabriel TURINICI

Contenu

  • probabilité historique (gestion de portefeuille classique), portefeuilles optimaux, beta, arbitrage, APT
  • Valuation de produits dérivés et probabilité risque neutre
  • Trading de volatilité, volatilité locale et calibration, formule de Dupire
  • Assurance du portefeuille: stop-loss, options, CPPIs
  • Options exotiques ou cachées: ETF short, etc.

Documents (support de cours, autres documents, …)

NOTA BENE: Tous des documents sont soumis au droit d’auteur, et ne peuvent pas être distribués sauf accord préalable ECRIT de l’auteur.

pour théorie de gestion de portefeuille
« actions » classique (proba historique)
livre du cours de M1 Mouvement
Brownien et évaluation d’actifs dérivés
Data python: CSV iciProgramme : portefeuille optimal portefeuilles pris au hasard
optimalCAC40 30_p5optimalCAC40 30_p15optimalCAC40 30_p30
Documents: rappels dérivéesCode: génération de brownien, calcul Monte Carlo d’optionsCode delta hedging
Code: trading de volatilitéRésultatsExplication théorique: document pdf
Code: stop loss, code CPPI,
code Constant-Mix
Résultat stop-loss, résultat CPPI,
résultat constant-mix
Théorie livre du cours de M1, sections 6.2 ;
Notes manuscrites
Vidéo Youtube sur le CPPI: partie 1/2, partie 2/2
Beta slippage: présentation.

Modèles de taux (M2 ISF App + M2 MASEF, 2020-2021)

Responsable: Gabriel TURINICI

Contenu

  • 1 Quelques rappels de calcul stochastique
  • 2 Generalites sur les modeles de taux
  • 3 Produits de taux classiques
  • 4 Le modele LGM
  • 5 Le modele BGM
  • 6 Modele SABR  
  • 7 Modele d’Heston (en fonction du temps)  
  • Bibliographie: poly distribué

Documents de support de cours, autres documents

NOTA BENE: Tous des documents sont soumis au droit d’auteur, et ne peuvent pas être distribués sauf accord préalable ECRIT de l’auteur.

Supports de cours: POLY , attention il s’agit d’une version mise à jour au fur et à mesure (dernière mise à jour: 5/3/2021).

Autres :  poly annoté, notes manuscrites

Partie introductive: poly analyse numérique, regarder chapitre « EDS » pour rappels de calcul sto.

 1_2

Analyse numérique: évolution (M1 Math, Université Paris Dauphine – PSL, 2020-21)

Responsable de cours: Gabriel TURINICI
Contenu:
1 Introduction
2 EDO
3 Calcul de dérivée et contrôle
4 EDS
Bibliographie: poly distribué

Documents de support de cours, autres documents

NOTA BENE: Tous des documents sont soumis au droit d’auteur, et ne peuvent pas être distribués sauf accord préalable ECRIT de l’auteur.

Supports de cours:

Statistique non-paramétrique (M1 Math 20-21)

M1 mathématiques appliquées, Université Paris Dauphine -PSL, 2020-21

Responsable: Gabriel TURINICI

Contenu

  • 1 Introduction et rappels
  • 2 Estimation de la fonction de répartition
  • 3 Tests robustes
  • 4 Estimation de densités par estimateurs à noyau
  • 5 Régression non paramétrique  
      Bibliographie: poly distribué

Documents de support de cours, autres documents

NOTA BENE: Tous des documents sont soumis au droit d’auteur, et ne peuvent pas être distribués sauf accord préalable ÉCRIT de l’auteur.


Supports de cours
poly 2020/21,
(dernière mise à jour 6 mai 2021).
Poly annoténotes manuscrites
Cours 1 : sections 1.1-1.2
« Motivation »
vidéo Youtube
Cours 1: section 1.3
« Inégalités »
vidéo Youtube
Cours 1, section 1.4
« Thm. de convergence classique »
vidéo Youtube
Cours 2 :section 1.5
« Rappels espérance conditionnelle »
vidéo Youtube
Cours 2 section 1.6
« Rappel variables symétriques »
vidéo Youtube
Cours 2 section 1.7.1
« Rappels sur les tests paramétriques (1) »
vidéo Youtube


A PARTIR d’ici version ancienne 2019/20

Notes du cours :  poly annoté cours 1et 2 , cours 3 , cours 3,4  notes manuscrites

corrigé ex 2018: regarder l’exo 3 qui démontre le fait que la convergence des cdf en tout point de continuité est pareil que celle de l’inverse généralisée.

Vidéos des séances de cours pendant confinement printemps 2020: Vidéo youtube sur le test du signe; Vidéo Youtube: test de Wilcoxon, Vidéo Youtube: propriétés des rangs.; Test de Mann-Whitney partie 1/2;    Test de Mann-Whitney partie 2/2, Estimation de densité partie 1/1, Estimation de densité par estimateurs à noyau, vidéo régression non paramétrique, vidéos: régression non paramétrique par polynomes locaux et régression: validation croisée et phénomène d’overfit,



Convergence dynamics of Generative Adversarial Networks: the dual metric flows — talk at the CADL workshop (ICPR 2020 conference)

This is a talk presented at the CADL (Computational Aspects of Deep Learning) workshop held during the 25th ICPR conference (held virtually in Milano, IT, Jan 10-15 2021) ICPR 2020 conference

Talk materials: